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CHAPTER 1 

 

General Introduction 

 

 
1.1 DISSERTATION OVERVIEW 

This dissertation discusses and details the research performed by the author in the 

Jeffries-EL research group from 2007-2013.  The work presented herein is centrally focused 

around the design, synthesis, and characterization of conjugated polymers for tunable organic 

semiconductors. This was accomplished by studying how various structural modifications 

affect the properties of these materials and the subsequent performance in organic 

semiconductors.  Chapter 1 begins with a general introduction to the physical and electronic 

properties of conjugated polymers for use in organic semiconducting applications and how 

they can be altered through structural modifications.  An overview of the physics and 

molecular engineering of organic photovoltaic devices and a discussion of the properties 

requirement for the fabrication of successful organic electronics follows.  Lastly, the 

background and significance of the primary organic heterocycles studied in this dissertation, 

benzo[1,2-b:4,5-b’]dichalcogenophenes, is discussed. 

Chapter 2 is a paper published in Chemical Communications in 2012 that discusses the 

synthesis, characterization and some theoretical analysis of two thiophene-flanked 

benzodifuran molecules and their subsequent copolymers with isoindigo.  The copolymers 

were then studied as the active layer in organic photovoltaic devices.  The author of this 

dissertation performed the synthesis and characterization of both polymers and the (5,5'-(3,7-

didecylbenzo[1,2-b:4,5-b']difuran-2,6-diyl)bis(3-decylthiophene-5,2-diyl))bis(trimethyl-

stannane) and also wrote the experimental section in the supporting information.  The 

synthesis of the isoindigo monomer as well as the device fabrication and testing was 

performed by Monique D. Ewan.  The theoretical evaluation was performed by Dr. Aimée L. 

Tomlinson.  The majority of the paper was written by Dr. Malika Jeffries-EL with 

contributions from the author of this dissertation. 
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Chapter 3 is a paper published in Polymer Chemistry in 2013 that discusses the effects of 

structure versus function of the copolymers of one of the benzodifuran monomers 

(synthesized in Chapter 2 of this dissertation) and various diketopyrrolopyrrole on organic 

photovoltaic device performance.  The synthesis and characterization of the copolymers was 

carried out by the author of this dissertation.  All of the diketopyrrolopyrrole monomer 

synthesis was performed by Benjamin J. Hale, except for the synthesis of bis(thiophen-2-yl)-

2,5-bis(tetradecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione  which was synthesized by Dr. 

Toby D. Nelson.  The final bromination step for the synthesis of 3,6-di(5-bromo-2-thienyl)-

2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, and bis(5-bromothiophen-2-

yl)-2,5-bis(tetradecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione was performed by the author 

of this dissertation.  The device fabrication and testing was performed by Monique D. Ewan 

with the assistance of Dr. Volodimyr Duzhko. The results and discussion, experimental 

section, and the supporting information were written by the author of this dissertation, except 

for the synthesis of the diketopyrrolopyrrole monomers which was written by Benjamin J. 

Hale.  The introduction section was written by Dr. Malika Jeffries-EL. 

Chapter 4 is a manuscript that is in preparation for Macromolecules and reports on the 

synthesis of an analogous series of benzodichalcogenophene monomers and their 

incorporation into donor-acceptor copolymers with furanyl-diketopyrrolopyrrole for organic 

solar cells.  The majority of the synthetic work was done by the author.  Benjamin J. Hale 

synthesized 3,6-bis(5-bromofuran-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,-

5H)-dione. The device fabrication and testing was performed by Monique D. Ewan.  The 

manuscript was written by the author of this dissertation. 

Chapter 5 is a manuscript that is in preparation for the Journal of Polymer Science: A and 

expands on the series of benzodichalcogenophene monomers synthesized in Chapter 4, by 

substituting the aliphatic side-chains on the benzodichalcogenophene core for 5-

alkylthiophen-2-yl side-chains to study the effect of 2-dimensional conjugation on organic 

solar cell performance in donor-acceptor copolymers with furanyl-diketopyrrolopyrrole. 

Benjamin J. Hale and Dr. Balaji Ganapathy each contributed to the synthesis 3,6-bis(5-

bromofuran-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, and 3,6-bis-

(5-bromofuran-2-yl)-2,5-bis(tetradecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione. The device 
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fabrication and testing was performed by Monique D. Ewan.  The manuscript was written by 

the author of this dissertation.  

Chapter 6 draws some conclusions from the work presented in this dissertation and 

discusses some future and ongoing research. This future work is related to improving upon 

the conjugated systems presented in this dissertation by proposing new strategies and 

molecular designs for reducing steric hinderdance within the molecules. Also, this section 

includes a brief discussion on the potential for the benzodifurans in this dissertation to be 

used in conjugated polymers for OLED devices. The author’s acknowledgments are also 

included at the end of this chapter. 

 

1.2 CONJUGATED POLYMERS: BACKGROUND 

The first example of electrical conductivity in an organic polymer was reported over 

three decades ago in doped polyacetylene prepared by Shirakawa, McDiarmid, and Heeger, 

et al.1, 2 Since that initial discovery, the field of organic-based semiconductors has taken 

significant strides forward and are moving toward the realm of commercial realization, 

including organic light-emitting diodes (OLEDs),3-6 photovoltaics (OPVs),7-11 field-effect 

transistors (OFETs),12-15 electrochemical cells (polymer batteries),16-18  non-linear optics,19-21 

and sensor devices.22-24  Despite the overall excellent performance of their inorganic 

counterparts, organic semiconductors are being adopted as practical replacements. Inorganic 

semiconducting materials are most commonly based on silicon, germanium, gallium 

arsenide, metallic sulfides, etc., and they lack the ability to be processed cheaply on an 

industrial scale. For example, silicon-based devices are most common, but achieving higher 

performance requires the use of expensive processing techniques such as vapor deposition 

and lithographic printing as well as fabrication from costly high-purity silicon.25-27  In 

attempt to reduce expenses, lower-cost amorphous silicon has been implemented in 

applications like solar cells, but these cells tend to suffer from relatively low efficiencies and 

can degrade quickly with use.28  
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Conversely, organic-based materials exhibit solubility in common organic solvents which 

allow materials to be cast using various cheap processing techniques like spin casting,29 dip 

coating30, ink jet printing,31 and screen printing.32  These techniques are highly desirable for 

scaled-up commercial use in roll-to-roll processing, as many of them can be extended to 

large area panels in addition to being processed onto flexible substrates.33  Although recent 

progress has been made in the manufacturing of flexible silicon-based devices,34 organic 

synthesis provides a larger palette of tunable properties used to manipulate the physical and 

electronic properties of the organic materials.  Simple structural alterations made to an 

organic molecule can be used to control how it performs in semiconducting devices and for 

which applications it would be best suited.35   

 

Figure 1.1.  Evolution of conjugated polymer band structures from π molecular orbitals in 
finite to infinite polyenes. 
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The origin of conductivity in organic materials lies within the π-conjugated backbone, 

comprised of alternating single and double bonds which creates an extended π-molecular 

orbital that exists throughout the polymer chain.  Conceptually, Figure 1.1 shows how as the 

π-conjugation is extended from ethylene, the number of π- and π*-molecular orbitals (MOs) 

increases from n = 1, to n = 2 in butadiene, to n = 4 in octatetraene and so on.  As the number 

of MOs increases with each addition to the conjugation length, the set of MOs spans a wider 

range of energy.  In this fashion, the energy of the highest occupied molecular orbital 

(HOMO) increases, while the energy of the lowest unoccupied molecular orbital (LUMO) 

decreases.36  As the conjugation approaches infinity, the fully occupied π-MOs become very 

close in energy to one another.  Likewise, the same phenomenon occurs in the unoccupied 

π*-MOs, resulting in two distinct bands of MOs, separated by a band gap (Eg).  These two 

sets of overlapping orbitals resemble the traditional band structure of inorganic 

semiconductors where the π- and π*-MOs represent the conduction and valence bands, 

respectively.2  It is this band structure which dictates the properties of organic 

semiconducting materials, but, as will be discussed later, this band structure can also be 

fined-tuned and tailored to make materials suitable for various semiconducting applications.  

Figure 1.2.  Band diagram of various materials. 

 
Initially, it might not seem obvious that a band gap should exist at all in an extended 

conjugated system.  In theory, as the conjugation increases, and the continuously increasing 

HOMO energy level is raised and decreasing LUMO energy level is lower until the two 
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converge, resulting in the elimination of the band gap.  This situation, by definition, make 

polyacetylene an organic metal.  As illustrated in Figure 1.2, metals possess no band gap, but 

rather a single, partially-filled band of electrons that allows for free conduction. Conversely, 

insulators have a band gap that is too large to promote conduction in any case, whereas 

semiconductors have a relatively small band gap that allows for conduction in some 

instances: typically when charge carriers are induced by either thermal, electrochemical, or 

optical means.37  In reality, most conjugated polymers may include various defects or 

experience steric interactions that can cause backbone twisting.  This can limit the 

delocalization of π-electrons to smaller segments of polymer which correspond to size of the 

band gap.  This is called the effective conjugation of the polymer and will be discussed in 

greater detail later.   

Figure 1.3.  The degenerate forms of poly(acetylene) that result in a Peierls distortion. 

 

 Hypothetically, if polyacetylene existed as an organic metal, the effective conjugation 

length would extend across the entire polymer chain, enabling the free movement of 

electrons.  In this scenario, there would be no differentiation between single or double bonds 

along the backbone and polyacetylene could be represented as (−CH−)n, shown by the Bond-

Equal Form in Figure 1.3. As a result, the π-electrons would be fully delocalized and able to 

freely move across the molecule and the material would exhibit the band structure of a metal.  

Of course, this situation does not occur, and polyacetylene experiences a geometric 

deformation that results in alternating short and long bonds also known as a Peierls 
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distortion. X-ray diffraction and nuclear magnetic resonance can be used to measure the 

difference in the bond lengths at approximately 1.35 Å and 1.45 Å.38, 39  This effect is largely 

responsible for the splitting of the energy levels and causes the widening of the band gap.40 

This discrepancy in the bond length arises from a forbidden transition between the two 

possible degenerate states of polyacetylene, labeled as R or L in Figure 1.3.  Both forms 

differ in how the single and double bonds alternate in the structure, with the HOMOs having 

bonding interactions between the double bonds and anti-bonding interactions between the 

single bonds and the LUMOs experiencing the reverse scenario.  At this point, the two states 

are energetically equivalent.  Interestingly the symmetric HOMO of the R form actually 

corresponds to the LUMO of the L form, while the HOMO of the L form corresponds to the 

LUMO of the R form.  This leads to a thermally forbidden transition between the R and L 

forms, resulting in a “dimerization” of the polymer and alternating bonds.41   This difference 

in the two forms is what leads to the splitting of the two bands and gives polyacetylene a 

finite band gap of 1.5 eV, which makes it an organic semiconductor.42   

 

Figure 1.4. Relative energy potential diagram of (a) the degenerate forms of polyacetylene 
and (b) nondegenerate forms of poly(p-phenylene) (PPP).  

 
However, most conjugated polymers are more complex than polyacetylene and have two 

possible nondegenerate ground state resonance forms, called the aromatic and quinoid.  A 

representative example of this is shown in poly(p-phenylene) (PPP) in Figure 1.4.43  The 

aromatic form is lower in energy and is characterized by carbocyclic or heterocyclic units 

separated by a single bond. This form maintains aromaticity by having its π-electrons 
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localized primarily within each cycle.  The other possible resonance structure is the quinoid 

form, where the single bonds and double bonds swap places and the π-electrons become 

delocalized between each cycle, leading to a less stable but highly planar backbone.  The 

difference between these two forms can be seen geometrically in the difference between the 

bond lengths of the single and double bonds.  This parameter, called bond length alternation 

(BLA), is defined as the average of the differences between adjacent carbon-carbon bonds.  

Larger BLA values correspond to the aromatic form being more prevalent in the ground 

state, whereas smaller BLA values indicate increased contribution from the quinoid form.44  

Most importantly, band gaps tend to decrease with increasing quinoidal character and smaller 

differences in BLA.45 

Figure 1.5. Resulting band gap of the aromatic and quinoid forms for poly(p-phenylene) 
(PPP), poly(p-phenylenevinylene) (PPV), polythiophene (PT), and polyisothianaphthene 
(PITN). 

 
Strategic structural modifications can be introduced along the conjugated backbone to 

control the size of the band gap by favoring either the aromatic or quinoid forms.  Benzene 

has an inherent, high-degree of aromaticity, primarily due to twisting of the phenyl-phenyl 

bond, so it is expected that poly(p-phenylene) (PPP) displays a wide band gap of 3.2 eV 

(Figure 1.5).  This band gap can be reduced simply by introducing vinyl groups within the 
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backbone. The result is a lower band gap in poly(p-phenylenevinylene) (PPV), which is 

likely a result of the potential for the vinyl groups to reduce twisting and stabilize the quinoid 

form.  Replacing benzene with various heterocycles also has a significant impact on the band 

gap.  For example, thiophene has a much higher preference for the quinoid form than 

benzene, thus, polythiophene (PT) has a significantly reduced band gap of 2.0 eV.46  Other 

strategies can be employed to promote the stability of the quinoid form, such as ring 

annulation exemplified by poly(isothianaphthene) (PITN).47  The quinoid form of PITN 

breaks the aromaticity of the thiophene ring and simultaneously creates the more favorable 

aromatic form of benzene, leading to a significant 1.0 eV reduction in the band gap when 

compared with polythiophene.48   

Another approach to reducing the band gap involves increasing the planarity of the 

conjugated backbone by minimizing various steric interactions between aromatic units.  As 

mentioned previously, steric interactions tend to cause backbone twisting that result in a π-

electron conjugation that is only effective over shorter, segmented distances.  This distance is 

affected by the structure of different compounds and inherently varies between different 

materials.49-52  To reiterate, as the conjugation length is increased, the band gap will decrease 

continually; however, conjugated organic materials will reach a point at which additional 

conjugated units will no longer result in any significant band gap decrease.  In this way, 

increasing conjugation length quickly approaches an asymptotic value for the band gap. 

A representative example the relationship between effective conjugation length and band 

gap size can be seen in a study by Otsubo, et al, wherein the band gaps of varying lengths of 

functionalized oligothiophenes were measured.52  Shown in Figure 1.6, as the chain length is 

increased from the dimer (n = 2) up to a repeat unit of n = 12, the band gap decreases by 1.51 

eV from -3.96 eV to -2.45 eV.  This change is substantial, but each additional repeat unit 

results in a smaller change in the band gap than the previous one.  As such, going from the 

12-mer to the 18-mer only results in a band gap that is 0.05 eV smaller.  To see another 

decrease of just under 0.05 eV, it takes a sizeable 76 additional repeat units.  Several studies 

have claimed that the effective conjugation length is achieved between 11 – 20 repeat units, 

and sometimes with as few as 8.53-55  The authors of this study make the claim that 

continuous red-shifting of the absorption is seen up to the 96-mer; however, the point at 

which no significant decrease in band gap is achieved is up for debate.  While significantly 
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increasing polymer chain length may result in very small changes in band gap, it does affect 

other important properties such as film-formation and charge transport mobility which will 

be discussed later.56, 57 Regardless, increasing the effective conjugation is a useful way to 

modify the band gap. 

 
Figure 1.6. Correlation between chain length and optical band gap in functionalized 
oligothiophene. 

 Clever synthetic strategies exist that utilize steric effects between aromatic units to 

modify the effective conjugation.  Interactions between alkyl chains on adjacent molecules 

can cause significant twisting of the conjugated backbone reducing the effective conjugation 

length.  Similarly, hydrogen-hydrogen interactions can cause backbone twisting, although to 

a lesser degree than in the case of polythiophene.  Chemical rigidification can also be used to 

reduce backbone twisting. This is typically done by bridging two or more adjacent

 
Figure 1.7. Examples of steric interactions between aromatic rings that can lead to twisting 
of the conjugated backbone. 
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aromatic rings into a rigid, ladder-like structure. Representative examples include molecules 

such as fluorine and cyclopentatdithiophene.  By extending the bridging of the ladder 

structure, the effective conjugation can be increased further, resulting in the simultaneous 

reduction of the band gap.58, 59  

 Band gap tuning of conjugated polymers is not limited to the control of the planarity of 

the system.  Another synthetic strategy exists that takes advantage of either inductive or 

resonance effects by the introduction of electron-donating and electron-withdrawing 

heteroatoms and functional groups along the polymer backbone.60  Some examples of 

common electron-donating and electron-withdrawing aromatic molecules are shown in 

Figure 1.8.  Typically, the incorporation of electron-donating substituents such as alkyls, 

alkoxyls, amines, or electron rich chalcogens increase the ionization potential and raise the 

HOMO level of aromatic molecules.  Conversely, electron-withdrawing substituents like 

fluorines, imines, nitriles, nitro groups, ketones, esters, or amides increase the electron 

affinity and result in lower LUMO levels.61   By far the most widely-used approach to 

engineer narrow band gaps while controlling the relative energy of the HOMO and LUMO 

levels is through the synthesis of conjugated polymers with a backbone comprised of 

alternating electron-rich donor (D) and electron-deficient (A) molecules.62-65
  

Figure 1.8. Examples of some common donor (n-type) and acceptor (p-type) molecules. 
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 These donor-acceptor (D-A) frameworks produce copolymers with reduced BLAs which 

arise from their push-pull nature associated with the formation quinoid structures with 

mesomeric character (D−A → D+=A-).61   However, perhaps the most straightforward 

explanation of the reduced D-A polymer band gaps is through orbital mixing, which results 

in hybridization of the donor and acceptor MOs.66  Illustrated in Figure 1.9, the interaction of 

the HOMO levels of the donor and acceptor generates a new higher-lying HOMO, while a 

new, lower-lying LUMO results from the interaction of the donor and acceptor LUMOs.  

Due to the relative similarity in the energy of the donor HOMO and the HOMO of the D-A 

copolymer, the donor typically has a much stronger influence on the HOMO of D-A 

copolymer.  Similarly, the LUMO of the acceptor strongly influences the LUMO of the D-A 

copolymer.46  In this way, by careful selection of both the donor and the acceptor, one can 

tune both the size and the relative position of the band gap.   

 

Figure 1.9.  Reduction of band gap resulting from orbital interactions of donor (D) and 
acceptor (A) molecules. 
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 To employ conjugated polymers in industrially viable organic electronics, the materials 

must be crystalline enough to maintain good charge transport capabilities, but still remain 

soluble in common organic solvents to make use of solution processing techniques.  

Numerous factors inherent to the polymer structure are responsible for the solubility of a 

given polymer.  One determining factor is the degree of polymerization, or the molecular 

weight of a polymer.67 Another significant factor governing polymer solubility are 

intermolecular interactions.68, 69  These interactions are heavily influenced by backbone 

rigidity within the chain and π-π stacking between chains.  Unsurprisingly, solubility 

decreases with both increasing polymer chain length and increasing intermolecular 

interactions.  This is unfortunate, as high molecular weight polymers can result in more 

ordered films and yield higher charge carrier mobility.     

Perhaps the most common method of controlling solubility is by attaching flexible, 

aliphatic side-chains to the polymer backbone.   In the vast majority of conjugated polymers, 

these alkyl side-chains are a necessity in obtaining solution-processable material.  The 

judicious choice alkyl chains can have a large impact on the performance of organic 

semiconductors by not only imparting varying degrees of order in polymer thin films, but 

also modifying the energy levels as well.70  Generally, polymers with short or linear alkyl 

chains tend to suffer from poorer solubility.71  The use of longer, or long and branched alkyl 

chains is commonly employed on the most insoluble conjugated materials, but this technique 

is not without consequence.  Bulky alkyl chains break up interchain interactions and have a 

negative effect on photoconductivity in OPVs, but they can be useful in OLEDs as they tend 

to limit fluorescence quenching through excimer formation.72  In some cases, a compromise 

can be made by means of short, branched alkyl chains that can greatly improve solubility 

while attempting to minimize interference with polymer order and π-stacking.73  

Additionally, alkyl chains can reduce a polymer’s thermal stability,74 although, the thermal 

decomposition temperature of most typical conjugated polymers still remains above the 

operating temperature of the average organic electronic device.  

Success in organic semiconductors is also tied to ability of a given conjugated polymer to 

transport charges in the solid state.75  Charge transport in organic semiconductors occurs via 

a charge-hopping mechanism, where the electrons and holes travel through the polymer film 

by “hopping” from one polymer chain to the next.76, 77  This charge hopping mechanism 
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contributes to the lower mobilities that conjugated polymers tend to suffer from and is 

affected by randomness in molecular positions or “kinks” in the polymer, grain and phase 

segregation boundaries, charge traps formed by polymer defects,  functional end-groups, and 

impurities such as residual metal catalysts.57, 78-80 Conjugated polymers also tend to have 

imbalanced charge transport in that they typically have better hole mobilities than electron 

mobilities due to their electron-rich nature.81, 82  Work is being done to synthesize polymers 

with high electron mobilities but it has proven difficult to obtain n-type materials that still 

perform well in electronic devices.83 

As mentioned previously, many of the factors that affect solubility also impact charge 

transport and mobility.  Charge carrier mobility is dependent upon the ability of the 

molecules to order themselves and the extent of π-π stacking they display.78  After solution-

processing, the strong inter-chain interactions of the material allow it to self-assemble into 

well-ordered regions of π-stacked polymer chains.84  Careful use of solution processing time 

and techniques can also have a large impact on film morphology and charge mobility.85  

Some of the investigated properties that have been shown to influence mobility include 

polymer shape,86 regioregularity,87 solubilizing alkyl chains,88 and molecule weight.67  Also, 

mobility measurements between devices can be difficult to compare accurately.  For 

example, in OPVs and OLEDS, charge propagates perpendicular to the polymer film whereas 

in OFETs, (commonly used to measure mobility of new polymers) charge moves parallel to 

the film.  This can lead to discrepancies in comparing charge transport measurements, as 

charge hopping between polymer chains can differ from charge transport along polymer 

chains.89 Due to the number of variables that effect mobility and its measurement, it can be 

difficult to draw conclusions between mobility and device performance.   

 

1.3 ORGANIC PHOTVOLTAICS 

 Focus on scaling up infrastructure in the wind, water, and sunlight-based energy systems 

has led to a number of proposed implementations.90-92  Among these, solar energy has the 

potential to outshine all other energy production, both renewable and nonrenewable 

combined, due to the large excess of sunlight the planet receives every day.93  In spite of this, 

photovoltaic technology still remains a largely untapped resource because certain barriers 
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still exist to large-scale implementation of solar technology.  As mentioned previously, high 

fabrication costs of silicon-based inorganic cells, which constitute the vast majority of 

current light-harvesting technology, result in a high cost of each kilowatt of energy produced.   

 

 
Figure 1.10.  Number of scientific papers published on semiconductors and organic semi-
conductors since 1976. 

 
Organic photovoltaic cell (OPV) technology has become an attractive alternative to these 

problems as it offers the potential of being made from cheap, renewable materials, the ability 

to be fabricated at low-cost and high volumes, and the capacity for use in flexible, light-

weight devices.11, 94, 95  Interest in this technology is evident from the incredible spike in the 

amount of research focused on solar cells during the last 10 years, with the increases in 

publications concerning OPVs exploding from only a handful to hundreds per year (Figure 

1.10).96  Currently, there are multiple examples of optimized polymer-based OPVs with 

power conversion efficiencies (PCEs) of 8 to 9%,97-99 with some of the latest breakthroughs 

being reported above 10%.100, 101  Despite these large gains in efficiency, further development 

is still requirement to promote commercial viability.   
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Early OPVs represented a class of basic device architectures based on a single organic 

component sandwiched between two electrodes.  For example, one OPV was fabricated by 

spin-coating and thermally annealing a PPV active layer on top of a transparent indium-tin 

oxide (ITO) anode.102  This is followed by the evaporation of a low-work function cathode 

contact layer, typically aluminum, calcium, or magnesium.  A schematic representation of 

this single-layer device is shown in Figure 1.11 and can be used to illustrate the fundamental 

principles of OPVs.  The differing values of the work functions results in band bending and 

creation of an electric field in the active layer.  Electrical power in the device is generated by 

photoexcitation of the organic polymer due to the absorption of photons of light, which 

generates a coulombically bound electron-hole pair, called an exciton.  Under the driving 

force of the electric field, the electrons and holes separate with the result that electrons travel 

towards the cathode and holes travel towards the anode.  This process produces the 

photocurrent and photovoltage that can be taken advantage of for energy applications.103
  

 

Figure 1.11.  Relative energy level diagram of a single layer OPV device including light 
induced excitation , exciton dissociation and band bending. 

 
The success of a photovoltaic (PV) cell is primarily evaluated by the generated power 

conversion efficiency (PCE); however, the quantity of the PCE is not measured as a direct 

output variable of the cell.  Instead several other crucial parameters in PV performance are 

measured and used to obtain the device efficiency.  These parameters, shown in Figure 1.12, 
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are the short circuit current density (Jsc), the open circuit voltage (Voc), and the fill factor (FF) 

are defined as:104 

 

Jsc – The short circuit current (Isc) per area of cell surface (perpendicular to charge 

transport).  The Isc is the current that flows because of the drifting of charges due to the 

internal field when no external field is applied.  Isc is governed by the quantum efficiency 

for charge separation, charge-carrier transport through the material, and loss of carriers 

due to recombination. 

Voc – The maximum possible voltage obtained from a cell.  This voltage is measured at 

zero current and governed by the inherent energy levels of the various PV materials. 

FF – The ratio of areas B to A as shown in Figure 1.12. B is determined by the actual 

maximum obtainable voltage (Vm) and current density (Jm), and A is determined by Jsc 

and Voc. The FF is governed by the series resistance and the shunt resistance and can be 

expressed by the following equation: 

FF = Vm·Jm/Voc·Jsc 

PCE – power conversion efficiency, also represented by η, is the ratio of electrical power 

generated by the cell (Pout) over the light power into the cell (Pin).  It can be determined 

by the following equation:  

η = Pout/Pin = Jsc·Voc·FF/Pin 

Figure 1.12.  Current density versus voltage (J vs. V) of a solar cell and the relevant 
parameters for determining fill factor (FF).  
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While useful for demonstrating some basic operating principles and sometimes producing 

a respectable Voc, the single layer architecture makes for poor performing OPVs owing to a 

set of significant shortcomings.   The most detrimental problem is poor exciton dissociation 

in the active later.  Excitons predominantly favor remaining bound together and decay, 

primarily via recombination, rather than dissociate at room temperature.105  Other factors 

such as imbalanced charge transport and the disordered nature of organic polymers also 

contribute.106   These drawbacks ultimately results in rather low PCEs of ~0.1-1%.102  To 

overcome the problems of exciton dissociation and imbalanced charge transport, devices 

comprised of two different semiconducting organic materials that form a heterojunction have 

been employed.107-109  This bilayer-based strategy (Figure 1.13) combines an electron-rich or 

p-type material with a higher-lying HOMO used as a donor layer and an electron-deficient or 

n-type material with a lower-lying LUMO used as an acceptor layer in tandem.  This time, 

when an exciton is generated in either layer it can diffuse to the donor-acceptor (D-A) 

interface and dissociate.  The dissociation occurs by the transfer of an electron from the 

LUMO of donor to the LUMO acceptor, accompanied by the concomitant transfer of a hole 

from the HOMOs of the acceptor to the donor.  The D-A interface provides a driving force 

for exciton dissociation as long as the energy difference between the LUMOs is greater than 

~0.2 eV, the dissociation energy of an exciton.110  The separated electrons and holes can now 

transport through the donor or acceptor materials to the respective electrodes, resulting in the 

generation of photocurrent. 

 

Figure 1.13.  Working mechanism of a bilayer OPV device involving exciton formation, 
diffusion to D-A interface, and dissociation into charge carriers ready to transport. 
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Although bilayered devices represent a step forward in OPV design by demonstrating the 

necessity of a D-A interface, they still suffer from several fundamental flaws leading to 

reduced PCEs.  Chief among these issues is that the active layer in OPVs should be thick, 

around 100 nm, to efficiently absorb incident photons while excitons have short diffusion 

lengths, approximately 10 nm, due to their limited lifetimes.109, 111, 112  This means that only 

excitons generated near the D-A interface will be able to dissociate and those created too far 

away will decay and be wasted.  To overcome this, the ideal scenario is a device possessing a 

highly-ordered heterojunction with 10-20 nm thick layers of interdigitated donor and 

acceptor material domains (Figure 1.14).  This would allow a majority of the excitons to 

reach the D-A interface while maintaining a direct corridor for the dissociated electrons and 

holes to travel to their respective electrodes.  Although it has been theorized, this device 

architecture has yet to be realized owing to a high degree of difficulty in fabrication and the 

issue of efficient charge separation remains perhaps the single biggest problem for OPVs. 

 

 
Figure 1.14.  Device architecture of idealized ordered heterojunction and the more practical 
bulk heterojunction solar cells (including highlighted isolated domain of material).  

 
As a more realistic compromise between bilayer and highly-ordered devices, the concept 

of a bulk-heterojunction (BHJ) device was introduced by Yu and Halls.113, 114  The active 

layer in BHJs is formed by blending the donor and acceptor materials into an 

interpenetrating, single active layer, which allows for the formation of a D-A interface with a 

very large surface area (Figure 1.14).  With the proper control of the phase separation, 

domain sizes, and film morphology, most of the exciton formation could occur near the 

interface while still allowing channels for charge transport to the electrodes.  Since BHJ cells 

only require a single active layer, problems related processing two adjacent layers with 

potentially similar solubility profiles can be avoided.  Initial attempts at BHJ devices 
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involved intermixing two polymers with offset energy levels, which led to PCEs up to 1.9% 

after optimization.115 

  Perhaps the most important advance in OPV research came when Sariciftci et al 

observed the photoinduced electron transfer in blends of conjugated polymer and 

buckminsterfullerene.116  C60 fullerenes possess many unique qualities that make them ideal 

candidates for acceptor materials.  Fullerenes are excellent for accepting electrons from p-

type materials due to a comparatively low-lying LUMO.117  They are also well-suited at 

stabilizing negative charges as the LUMO is triply-degenerate and can accept up to six 

electrons at a time.   Fullerenes also provide a kinetic driving force for highly efficient charge 

separation, as electron transfer takes place at around 45 fs, significantly faster than back 

electron transfer or radiative decay through photoluminescence.118  While p-type polymers 

can suffer from photooxidation of their excited states, fullerene can help mitigate this 

problem by quickly quenching the excited state.119, 120  Lastly, fullerenes also display high 

electron mobilities in OFETs, a quality required for good n-type materials.121  

 

Figure 1.15.  Molecular structures of [6,6’]-phenyl-C61-butyric acid methyl ester (PCBM) 
and [6,6’]-phenyl-C71-butyric acid methyl ester PC71BM.  

 
Unfortunately, C60 lacks solubility in organic solvents. This problem has been overcome 

by the functionalization of C60, most notably in the case of [6,6’]-phenyl-C61-butyric acid 

methyl ester (PCBM) (Figure 1.15).122  PCBM does not absorb particularly well in the visible 

region and is sometimes replaced by the C70 version of PCBM, PC71BM, which is less 

symmetric and has more low-energy transitions (Figure 1.15).123-125  Nevertheless, BHJ cells 

are not perfect and typically have problems related to maintaining good segregation of 
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PCBM and polymer phases.  If domains form of either polymer or PCBM that are much 

larger than the average exciton diffusion distance, there will be less excitons reaching the D-

A interface and less dissociation into charge carriers. Also, during the solution processing of 

the active layer, it is possible for domains of either polymer or PCBM to become isolated 

from the electrode (Figure 1.14).  Any excitons that form charge carriers within this isolated 

domain are cut-off from any transport pathways.  Both of these issues have become a major 

focus of the OPV community, as they lead to reduced PCE in devices. Accordingly, there has 

been a plethora of research done in attempt to address them.126 Some of the many examples 

include varying process conditions and post-production treatment to control self-

assembly,127-129 introducing small amounts of solvent additives like 1,8-diidooctane and 1-

chloronapthalene during film processing,130, 131 the synthesis of block copolymers,132-134 the 

use of nanostructures to influence morphology,135-137 and even covalently attaching PCBM to 

the conjugated polymer itself.138-141  Nevertheless, the PCBM-conjugated polymer systems 

are currently the best performing polymer OPVs. 

Not only does control of the polymer:PCBM morphology affect the percolation pathways 

for charge carries, it also plays an important role in enhancing fill factors (FF) and open 

circuit current densities (Jsc).142-144  This has been accomplished by the aforementioned 

incorporation of a solvent additive145 as well as controlling the film growth rate,84 optimizing 

film thickness and the use of thermal annealing.146  As discussed in the previous section, the 

use of solubilizing side-chains is an impactful way to control the film forming capabilities of 

the polymer.  Another performance-determining set of polymeric parameters that is 

interrelated with solubility is the molecular weight (Mw) and polydispersity index (PDI) of 

the polymer.  Although higher molecular weights tend to improve performance, respective 

Mw and PDI Respective values of around 20-30 kDa and 1.2-2.0 are typical minimum 

benchmarks.  These aspects affect a multitude of other morphology-influencing properties, 

including solubility, thermal stability solution and film aggregation, and formulation 

rheology.147  These morphological considerations are heavily influence by the structure of the 

polymer. 
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One example of how structure plays a role in morphology is that of poly(3-

hexylthiophene) (P3HT).  The short linear side-chains in P3HT interdigitate and form a 

herringbone-like pattern.148  This introduces improved crystallinity by the formation of 3-

dimensional packing of the polymer chains, leading to highly-ordered lamellar structures in 

films (Figure 1.16).149  Although the use of long or branched alkyl chains to increase 

solubility typically disrupts good film forming ability, there are examples of polymers that 

exhibit enhanced OPV performance when branched chains are used instead of linear ones.70  

Unfortunately, predicting which side-chains will perform best with a specific polymer system 

is very difficult and determining the best performing structure typically arises from 

synthesizing many different iterations.150, 151  Alkyl chains can also affect the phase 

segregation of BHJ cells by affecting how well the polymer aggregates with PCBM.152 

 

Figure 1.16.  Illustration of how the regioregularity of poly(3-hexylthiophene) leads to 
interdigitated alkyl side-chains and well-order crystalline packing of the polymer chains.  

 
Since the main function of any solar cell is convert sunlight to electrical energy, it is 

necessary to design materials suitable for absorbing as much of the solar spectrum as 

possible.  As shown in Figure 1.17, the maximum amount of solar radiation occurs from 500 

nm up to approximately 700 nm, with a significant amount tailing off into the near IR region.  

To take advantage of this, an absorbing material with a band gap of about 1.6-1.7 eV is 

required.  Coincidentally, narrower band gaps lead to increases in open circuit current 

densities (Jsc) as this variable is directly proportional to the number of excitons generated.  
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This leads to the generation of more potential charge carries and, thus, more current.142  

Given that PCBM, as an acceptor, has a much wider band gap and only absorbs high energy 

radiation, it falls onto the conjugated polymer to absorb this broad swath of lower energy.  As 

discussed in the previous section, many techniques and strategies have been employed to 

manipulate the band gap of conjugated polymers to give very broad absorbance.46, 153  

Ultimately, these techniques involve raising and lowering the HOMO and LUMO levels in 

the polymer either individually or simultaneously.  

 

Figure 1.17.  Solar irradiation spectrum of sunlight at the top of the atmosphere and at sea 
level.  

 
The position of the energy levels and resulting size of the band gap affect more than just 

the amount of light absorbed; other properties of BHJ cells are attributed to the 

optoelectronic characteristics of the materials in the active layer.  One of these properties, 

previously discussed, was that the LUMO of the acceptor must be at least 0.2-0.3 eV higher 

than that of the conjugated polymer to drive electron transfer between the two materials.  

Another critical property determined by the relative energy levels of the active layer 

materials is the open circuit voltage (Voc).  The value of the Voc is linearly proportional to the 

energy difference between the LUMO of the acceptor and the HOMO of the donor as 

described in Figure 1.18.154, 155  Since the Voc is also directly proportional to the PCE, 

optimizing this parameter is of great importance.  Within the conjugated polymer, the Voc can 
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be maximized by lowering the HOMO and raising the LUMO levels, but not to an extreme 

where the band gap becomes so large that not enough solar radiation is absorbed.  It becomes 

apparent that a balance between good absorbance (narrow band gap), favorable exciton 

dissociation (difference in LUMOs), and high Voc (~ LUMOacceptor - HOMOdonor) is needed.  

Taking these factors into account, the ideal PCBM-based OPV has a LUMO of around -3.7 

to -4.0 eV and a HOMO between -5.2 and -5.7.156, 157  It is worth noting that attempts to 

optimize these parameters by synthetically tuning the energy levels of fullerene-based 

acceptors, most specifically the LUMO, have also been attempted.158, 159   

 

1.4 A BRIEF INTRODUCTION TO BENZODICHALCOGENOPHENES 

Among fused-ring building blocks for organic semiconducting materials, benzo[1,2-

b:4,5-b’]dithiophene (BDT), shown in Figure 1.19, is one of the most widely used for 

electron-donating molecules.160    The fused-ring structure allows for increased planarity 

while its symmetric nature allows for regioregularity desired for many D-A copolymers.  

These promising properties led to one of the highest reported hole mobility of 0.25 cm2V-1s-

1in OFETS back in 2007.161  The first report of BDT in OPVs was in 2008 by Hou et al 

resulting in a moderate 2% PCE.162  Since then, BDT has been incorporated into many 

successful BHJ OPVs with PCEs of over 7% in standard architecture solar cells and 9.2% in 

inverted cells.98, 163-165  Much this success can be related to the fact that most BDT-containing 

D-A copolymers maintain a good balance between narrow band gaps and deep HOMO 

Figure 1.18.  Illustration of the optimal energy levels of a conjugated polymer-based donor 
material used with PCBM in a BHJ-OPV.  The important factors are the difference in the 
LUMOs for effective charge separation, narrow band gaps for optimal solar absorbance, and 
maximizing the Voc by stabilizing the HOMO of the donor. 
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levels.  Also, advantageous synthetic routes to BDT allow for tunable properties through easy 

side-chain modification.   

 While there are multiple syntheses reported for BDT,166-168 the most commonly used 

route was reported first by Beimling and Kossmehl in1986.169 This synthetic pathway is 

highlighted in Scheme 1.19.  The key step involves the cyclization of diethyl-3-thiophene 

carboxylic acid amide 2 to give the 4,8-substituted dione 3.  The main advantage of this route 

is that the dione 3 can be functionalized with a variety of side-chains to tune the electronics 

of BDT.  The standard alkyl-chain can be replaced by alkoxy chains to increase the donor 

strength of the molecules.  Additionally, 2-alkylthiophenes have been affixed to the BDT 

core as an attempt to modify the electronic through 2-dimensional conjugation and enhance 

the film forming properties by increasing planarity.170, 171 

Recently, there has been an interest in exploring how the incorporation of various 

heteroatoms will affect conjugated materials and the devices made from them.  One approach 

to this has been through the synthesizing BDT analogues that take advantage of the other 

members of the chalcogen family: oxygen, selenium, and even tellurium (Figure 1.19).  

These other benzo[1,2-b:4,5-b’]dichalcogenophenes are isoelectronic to BDT, but may 

possess other unique properties beneficial to organic electronics.  Furan, for example, is an 

attractive alternative to thiophene as that it is less aromatic and, thus, could stabilize the 

quinoid form better leading to narrower band gaps.172  Furan also has a diatomic radius that is 

approximately 60% as large as that of thiophene. As a result, bifuran is a highly planar 

molecular whereas bithiophene experiences more steric interactions and is twisted out of 

Figure 1.19.  Molecular structures of aromatic cores for the known benzo[1,2-b:4,5-
b’]dichalcogenoophenes (BDCs). 
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plane by about 20°.173 Despite this, oligofurans maintain better solubility in common organic 

solvents than do oligothiophenes.  However, furan has some significant drawbacks as well, 

including being more electron-rich than thiophene resulting in a higher-lying HOMO that is 

more easily oxidized.174  In addition to be more unstable, oligofurans also suffer from 

reduced hole mobility when compared to thiophene.  In spite of all this, recent research has 

suggested that conjugated polymers that judiciously incorporate furan into the backbone can 

experience increases in overall performance.   

 
Scheme 1.1. The most widely used synthetic pathway to BDT and the analogous synthesis of 
BDF. 

 
To take advantage of these qualities, there has been a recent uptick in the number of 

OPV-related papers published on benzo[1,2-b:4,5-b’]difuran (BDF).  Until recently, the 

general lack of synthetic routes to functional BDF has prevented its widespread use.175-177  

One of these syntheses produces BDF in a manner analogously to BDT (Scheme 1.1), only 

differing in the conditions of the alkylation step to give 4a.  The incorporation of these BDF 

monomers into copolymers with benzothiadiazole gave good efficiencies of up to 5%.178  

Another novel route, which will be discussed in more detail in the latter chapters of this 

thesis, was first reported by Larock et al in 2005.179  This chemistry involved the 

electrophilic cyclizations of various heterocyclic annulenes, specifically the reaction of 

iodine with o-alkynylanisoles (Scheme 1.2).  During a synthesis this library of benzofurans 

with the goal of providing new synthetic pathways toward the total synthesis of natural 

products, one attempt was made at synthesizing a BDF molecule.  Unfortunately, the 
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resulting product was almost completely insoluble.  In the work described in the following 

chapters, the author of this thesis has taken steps to address these solubility issues.180  

 

  
Scheme 1.2. Larock electrophilic cyclization resulting in functionalized benzofurans (top) 
and synthesis of bisphenylbenzodifuran reported by Larock (bottom). 

 
There are even fewer examples of benzo[1,2-b:4,5-b’]diselenophenes (BDSe) in the 

literature, with a few examples of the synthesis of the BDSe core.181-183  It is proposed that a 

selenium-based conjugated heterocycle should have narrower band gaps and enhanced 

interchain interactions, due to the greater polarizability, which should lead to higher hole 

mobility.  One report compares BDSe to BDT-based polymers in OFETs and finds a 

negligible difference in electronics and only a slight increase in hole mobility from BDT to 

BDSe.  There is only one account of BDSe being used in OPVs, with promising results.184  

The BDSe-based polymers had higher PCEs in both examples when compared with the 

analogous BDT-based polymers by 5% in one case and an impressive 20% in another.185  

These improvements were attributed to the synergistic effects of a more optimal band gap, 

charge carrier mobility, and absorbance of the solar spectrum. 

To date, there have only been two reports on the synthesis of benzo[1,2-b:4,5-

b’]ditellurophene (BDTe): one as evaluation of its optoelectronic properties along with BDT 

and BDSe, and one incorporating these molecules into OFETS.186, 187 BDTe has a smaller 

band gap due to the destabilization of its HOMO level and, as a result, it has a significantly 
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red-shifted absorbance; however, it did not perform as well as the analogous BDSe 

compound in OFETs.  The only other significant report of the use of covalently-bonded 

tellurium in organic semiconductors was a report of a D-A copolymer of tellurophene and 

diketopyrrolopyrrole (DPP) that was used in OFETs.188  The tellurophene-based polymer had 

a higher hole mobility by an order of magnitude when compared to the thiophene-based 

polymer.  Despite the potential benefits of tellurium heterocycles, the synthetic difficulties 

and rarity of tellurium in the earth’s crust limit its widespread adoption into semiconducting 

materials.189 

 

1.5 CONCLUSIONS 

From a design standpoint, synthesizing the ideal p-type conjugated polymers for use in 

OPVs must take the following considerations into account: 

 Suitable Energy (HOMO and LUMO) levels 

o Good overlap of absorbance with solar spectrum  

 Reasonably narrow band gaps (1.5-1.8 eV) 

 Tuned by controlling effective conjugation length 

 Stabilizing/destabilizing the aromatic form 

 Minimizing undesirable steric interactions  

 Tuned by using donor/acceptor copolymers 

 Increasing relative donor/acceptor strength leads to narrow band gaps 

 Good absorbance improves short circuit current density (Jsc)  

o Determines charge separation/dissociation of excitons 

 LUMOdonor – LUMOacceptor ≥ 0.25-0.4 eV – effect separation 

 HOMOdonor primarily influenced by electron-rich monomer 

 LUMOacceptor determined by the acceptor/n-type material (typically 

PCBM) 

o Determines open circuit voltage (Voc) 

 LUMOacceptor - HOMOdonor  Voc - which should be maximized (within reason) 

 HOMOdonor primarily influenced by electron-rich monomer 
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 LUMOacceptor determined by the acceptor/n-type material (typically 

PCBM) 

o Determines oxidative stability (Voc) 

 Higher-lying HOMOdonor decreases oxidative stability 

 

 Good thin film morphologies 

o Higher molecular weights tend to improve performance in OPVs 

 Longer polymer chains increase crystallinity and higher charge carrier 

mobilities 

 Appropriate Choice of Alkyl Chains 

 Short, linear alkyl chains that are interdigitated can increase crystallinity 

but decrease solubility (example: P3HT) 

 Long and/or branched chains can disrupt π-stacking, but increase 

solubility 

o Narrow PDIs lead to more consistent film-forming properties 

o Judicious choice of structure of conjugated polymer backbone 

 More planar molecules tend to experience better π-stacking 

 Certain heteroatoms, heterocycles, and other functionalities influence π-

stacking  

The factors influencing the performance of conjugated polymers in OPVs are numerous 

and are highly interrelated.  Changing one design aspect of a material can lead to various 

effects in other areas, either desirable or undesirable, and can be rather frustrating at times.  

While there are many of examples of well-performing organic semiconductors there still 

exists a great need to synthesize and explore new materials for both p-type and n-type 

applications.  Only through the exploration of structure-function relationships and the 

development of new, elegant synthetic pathways can the field of organic semiconductors 

move towards widespread commercial implementation.  
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CHAPTER 2 

 

Synthesis of 3,7-Diiodo-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']difurans: Functional 

Building Blocks for the Design of New Conjugated Polymers. 

 

Chemical Communications 2012, 48, 8919. 

DOI: 10.1039/C2CC34070D 

Reproduced with permission from Royal Society of Chemistry 

Copyright © 2012 

 

Brandon M. Kobilka,a Anton V. Dubrovskiy,a Monique D. Ewan,a Aimée L. Tomlinson, b 

Richard C. Larock,a Sumit Chaudhary c and Malika Jeffries-EL*a 

 
aDepartment of Chemistry, Iowa State University, Ames, IA 50011  

b Department of Chemistry, North Georgia College & State University, Dalhonega, GA 

30597 
c Department of Electrical Engineering, Iowa State University, Ames, IA 50011 

 

 

 

 

 



www.manaraa.com

39 

2.1 ABSTRACT 

3,7-Diiodo-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']difurans are efficiently prepared by 

an iodine-promoted double cyclization. This new heterocyclic core is readily modified by the 

attachment of alkyl chains for improved solubility. The use of these compounds for the 

synthesis of new conjugated polymers is also reported. 

2.2 INTRODUCTION 

Organic semiconductors are finding widespread use as replacements for their inorganic 

counterparts in a range of applications, including field effect transistors (OFET)s, light-

emitting diodes (OLED)s, and photovoltaic cells (OPVC)s.1-3 These materials offer 

advantages in the form of facile device fabrication via solution-based techniques and energy 

levels that can be tuned by chemical synthesis. Tuning can be accomplished through the 

synthesis of materials with alternating electron-donating and electron-accepting moieties.4, 5 

Among electron-donating building blocks, benzo[1,2-b:4,5-b′]dithiophene (BDT) is 

particularly promising, due to its planar conjugated structure that facilitates π−π stacking, 

leading to higher hole mobility.6-9 Bulk heterojunction photovoltaic cells (BHJ-PVC)s using 

BDT copolymers as donors have achieved power-conversion efficiencies (PCE)s up to 

7.4%.8 

Recently, furan-containing molecules have been explored for the design of organic 

semiconductors.10-13 Furan is an attractive alternative to thiophene, since it is isoelectronic, 

while possessing a Dewar resonance energy of 18.0 kJ mol-1, which is less aromatic than that 

of thiophene (27.2 kJ mol-1).14 Thus, replacing thiophene with furan is expected to favor the 

formation of quinoid structures, leading to a reduction in the band gap of the resulting 

materials. Although benzo[1,2-b:4,5-b’]difurans (BDF)s are known in the literature, the lack 

of methods for the synthesis of substituted derivatives has prevented their widespread use.15-

19 Encouraged by some of our earlier work on iodocyclization, we explored this approach for 

synthesizing BDFs.20 Herein, we report the synthesis of functional BDFs and their 

polymerization with isoindigo, an electron-deficient moiety that has been used in several 

polymers with high PCE, when used as donor materials in BHJ-PVCs.21, 22 
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2.3 RESULTS AND DISCUSSION 

 

Scheme 2.1. Synthesis of 3,7-diiodo-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']difurans 2a and 
2b and their subsequent alkynylation. 

 

Our synthetic route to the BDFs is shown in Scheme 2.1. This approach offers several 

benefits, including: 1) the use of easily prepared starting materials and inexpensive catalysts; 

2) the enhanced solubility afforded by the alkyl chains on the flanking thiophene rings; and 

3) the opportunity to generate a variety of new substituted BDFs from a common 

intermediate via cross-coupling reactions. Compounds 1a and 1b have been prepared by the 

Sonogashira cross-coupling of 1,4-dibromo-2,5-dimethoxybenzene and either 2-ethynyl-3-

decyl-thiophene or 2-bromo-3-decyl-5-ethynylthiophene (see Supplementary Information, 

SI). The iodine-induced double cyclization of compounds 1a and 1b afforded 3,7-diiodo-2,6-

di(thiophen-2-yl)benzo[1,2-b:4,5-b']difurans 2a and 2b in yields of 70 and 82% 

respectively.20 Both regioisomers are easily purified by recrystallization. The Sonogashira 

cross-coupling reactions of 2a and 2b with 1-decyne affords 3a and 3b in yields of 96% and 

92% respectively. Crystals of 2a suitable for X-Ray analysis were obtained by 

recrystallization. Detailed crystallographic data can be found in the SI. In addition to 

confirming the identity of this new compound, the X-ray analysis indicates that the BDF ring 

system is planar, which is beneficial to promoting efficient -stacking and improving the 

charge transport of materials derived from this intermediate. The torsion angles between the 

BDF and thiophene rings are approximately 175.3. 
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Scheme 2.2. Modification and polymerization of the 2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-
b']difurans. 

 

The remaining synthetic steps to the desired polymers are shown in Scheme 2.2. The 

hydrogenation of the alkynyl BDFs 3a and 3b afforded the alkylated derivatives 4a and 4b in 

yields of ~95% each. Subsequent stannylation afforded 5a and 5b in yields of ~94% each. 

The Stille cross-coupling polymerization of 5a or 5b with 6,6’-dibromo-N,N’-(2-

octyldodecanyl)-isoindigo 623 afforded the polymers PTinBDFID and PToutBDFID in 

excellent yields after purification by Soxhlet extraction with methanol, followed by acetone, 

to remove residual catalyst and low molecular weight materials. Of the catalysts evaluated, 

Pd2(dba)3 gave the best results (Table 2.1). The polymers are soluble in standard organic 

solvents, such as THF and chloroform, at room temperature. Monomer 5a consistently 

produced polymers with higher molecular weights. Presumably, this is due to the reduced 

steric hindrance at the 2- and 2’-positions of the BDF moiety.  

We anticipated that the differences in the regiochemistry of the BDFs would result in 

differences in the optical spectra. Compounds 2b, 3b, and 4b, with the alkyl substituents on 

the 4 and 4’ positions of the thiophene rings, have less interaction with the pseudo-peri 

iodine, alkyne, or alkane substituents, and exhibit greater vibrational structure than analogs 

2a-4a (see SI). Arguably, this is due to the greater rigidity of the overall aromatic 

chromophore, i.e. reduction of out-of-plane rotation of the thiophene moieties. The 

dramatically different band shapes between the members of each pair mean that comparisons 
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of max between “a” and “b” analogs is not particularly meaningful. However, the leading 

edge of the onset of strong S1 absorption for each “a-b” pair of compounds extrapolates to a 

very similar wavelength, with each pair distinct from the other two. This reflects the intrinsic 

electronic similarities between each pair of isomers. 

 
Table 2.1. Reaction conditions and molecular weight data for PTBDFIDs. 

Polymera Catalyst Yield (%)c Mw
b Mw/Mn DPn 

PToutBDFID Pd(PPh3)4 82 20,500 1.3 12 

PToutBDFID Pd2(dba)3 86 33,100 1.9 19 

PTinBDFID Pd(PPh3)4 79 35,000 1.9 21 

PTinBDFID Pd2(dba)3 84 76,200 2.3 45 

a [monomer] = 0.2 M in toluene, and Pd catalyst loading = 2 mol%. b Molecular 
weight data was obtained by GPC (see ESI). c Isolated yield.  
 

As expected, the additional conjugation of the alkynyl groups of 3a and 3b produces a 

red shift in the onset of absorption and max of the S1 absorption band. Compared to the alkyl 

substituents in compounds 4a and 4b, the iodo substituents in 2a and 2b induce a red-shift – 

albeit smaller than that of the alkyne – consistent with a reduction in conjugation length and 

orbital overlap (see SI). The UV–vis absorption spectra of PTinBDFID and PToutBDFID in 

solution and in thin films are shown in Figure 2.1 and the optical and electronic properties 

are summarized in Table 2.2. Both polymers exhibit two main absorption bands. The high 

energy bands can be attributed to the π-π* transition, whereas the low energy bands are due 

to intramolecular charge transfer between the donor and acceptor units. In solution, the max 

of PTinBDFID’s low energy band is red-shifted 18 nm relative to PToutBDFID, whereas the 

max of PTinBDFID’s high energy band is blue-shifted 21 nm relative to PToutBDFID. In the 

solid state, the max for the low energy band of PToutBDFID is blue-shifted 41 nm relative to 

PTinBDFID and the difference in the high energy band is only 12 nm. These results suggest 

that PToutBDFID has a more twisted backbone than PTinBDFID. The optimized geometries 

obtained for isoindigo/BDF oligomers calculated using density functional theory also support 

the notion that PToutBDFID has a more twisted structure (see SI). The similarity 
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PToutBDFID’s solution and film spectra indicates the steric interaction between the out 

facing side chain and the isoindigo group inhibits planarization. 
 
 
Table 2.2. Electronic and optical properties of PTBDFIDs. 

a HOMO= -(  + 5.1) (eV).. b LUMO = -(  + 5.1) (eV). c Estimated from the optical 
absorption edge. d Onset of potentials (vs Fc). 

 

The electrochemical properties of the polymers have been investigated by cyclic 

voltammetry (CV). Both polymers exhibit measureable and reproducible oxidation and 

reduction processes. The electrochemical band gaps are both approximately 0.3 eV higher 

than the optical band gaps (Eg
opt) determined via the tangent lines on the absorption spectra. 

This difference can be attributed to the electron injection barrier in the electrochemistry.24, 25 

The HOMO and LUMO values of both polymers are similar to those reported previously for 

PBDT-OIO, a related terpolymer of 6, thiophene and BDT (LUMO -3.91 eV and HOMO -

5.74 eV).26 Unfortunately, we cannot arrive at a conclusion regarding the relative donor 

strength of BDF, as the BDT group had two electron-donating alkoxy groups on the central 

benzene ring. Although, the LUMO values are less than 0.3 eV lower than those of the 

PC61BM acceptor, impeding charge transfer the HOMO level of both polymers are deep 

enough to ensure air stability, while providing for good open-circuit voltage (Voc).27, 28  

  

Eonset
ox

  

Eonset
red

Polymer Media max (nm) HOMOa 
(eV) LUMOb (eV) Eg

opt (eV)c Eg
EC 

(eV)d 

PToutBDFID THF 399, 582     

PToutBDFID Film 403, 612 -5.7 -3.8 1.7 1.9 

PTinBDFID THF 378, 600     

PTinBDFID Film 415, 653 -5.7 -3.8 1.6 1.9 
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Fig. 2.1. UV-vis absorption of the polymers in solution and thin films. 

 
The performance of both polymers in BHJ-PVCs was evaluated using PC61BM as the 

electron acceptor with a device configuration of indium tin oxide (ITO)/poly(3,4-ethylene 

dioxythiophene):polystyrene sulfonate (PEDOT:PSS)/polymer:PC61BM(1:4, w/w)/LiF/Al. 

The active layer processing conditions were chosen to yield a layer thickness less than 100 

nm. In general (for P3HT systems), thicker layers (~200 nm) are better, because they absorb 

more light. However, since new generation donor/acceptor polymer films do not have a long-

range order like P3HT, thicker layers tend to have increased recombination due to hole traps, 

and thus lower efficiencies.29 The fabrication conditions and PVC parameters (fill factor 

(FF), short-circuit current density (Jsc) and Voc) are summarized in Table 2.3. The current-

voltage (I-V) characteristics of our devices are shown in Figure 2.2. 

 

Table 2.3. Photovoltaic performance of PinBDFID and PoutBDFID with PCBM. 
 

Polymer  VOC  
(V) 

ISC  
(mA) 

JSC (mA/cm2) FF  
(%) 

PCE  
(%) 

      
PinBDFID 0.7366 0.208 -1.66 48.6 0.590 
PoutBDFID 0.6410 0.164 -1.306 36 0.301 

Polymers films were prepared from solutions in o-DCB 10 mg/mL. 
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Fig. 2.2. Current-voltage characteristics of polymer PVCs (left). Normalized external 
quantum efficiency vs. wavelength curve of the PVCs (right). 

 
Overall, PTinBDFID PVCs performed better than PToutBDFID-based devices in all 

categories. This is most likely an effect of the polymer’s planarity on morphology, and is 

currently being evaluated further. Although the performance of these devices is lower than 

other conjugated polymers, this is our first attempt toward fabricating PVCs from these 

materials. We note that the performance of most new systems can be dramatically improved 

by the optimization of processing parameters.  

 

2.4 CONCLUSIONS 

In conclusion, we report the efficient synthesis of novel electron-rich building blocks 

based on 2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']difurans and their use for the development 

of donor-acceptor copolymers. The highlights of this work are the overall high yields of the 

reactions and the versatility of the synthetic approach. The energy levels of the new polymers 

are suitable for use as donor materials in BHJ-PVCs. Preliminary device studies have shown 

good Voc and FF, but low overall performance. We are currently working to optimize the 

device performance in addition to developing new materials based on BDFs. 
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2.5 EXPERIMENTAL 

Detailed descriptions of the synthetic, analytical and device fabrication procedures and 

methods can be found in the supporting information section. 
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2.7 SUPPORTING INFORMATION 

2.7.1 General Methods 

All reactions were carried out at ambient atmosphere and temperature (18-25 °C) unless 

otherwise noted. Tetrahydrofuran and toluene were dried using an Innovative Technologies 

solvent purification system.  Solvents used for Pd-catalyzed reactions were deoxygentated 

prior to use by bubbling a stream of argon through the stirred solvent for 30-60 minutes.  

Trimethylsilyl acetylene was purchased from GFS chemicals. 

Bis(triphenylphosphine)palladium(II) dichloride was purchased from Oakwood Products, 

Inc. All other chemicals were purchased from Sigma-Aldrich and used without further 

purification. 3-Decylthiophene30, 2,5-diido-1,4-dimethoxybenzene31 and 6,6’-dibromo-N,N’-

(2-octyldodecanyl)isoindigo 632, 33 were synthesized according to literature procedures.  

Nuclear magnetic resonance (NMR) spectra were carried out in CDCl3 and recorded at either 

400 MHz or 300 MHz (1H NMR) and 150 MHz, 100 MHz or 75 MHz (13C NMR) as noted. 
1H NMR spectra were internally referenced to the residual protonated solvent peak, and the 
13C NMR are referenced to the central carbon peak of the solvent. In all spectra, chemical 

shifts are given in δ relative to the solvent and coupling constants are reported in hertz (Hz). 

High-resolution mass spectra (HRMS) were recorded on a double-focusing magnetic sector 

mass spectrometer using ESI or APCI, as noted, at 70 eV. Melting points were obtained 

using a MELTEMP melting point apparatus with an upper temperature limit of 260 °C. Gel 
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permeation chromatography (GPC) measurements were performed on a separation module 

equipped with three 5 μm I-gel columns connected in series (guard, HMW, MMW and 

LMW) with a UV-vis detector.  Analyses were performed at 35 °C using THF as the eluent 

with the flow rate at 1.0 mL/min. Calibration was based on polystyrene standards. 

Thermogravimetric analysis measurements were performed over an interval of 50-850 °C at a 

heating rate of 20 °C/min under a N2 atmosphere. Differential scanning calorimetry was 

performed with a first scan heating rate of 15 °C/min to erase thermal history and a second 

scan to measure transitions between 0-330 °C under nitrogen. Transitions were also 

measured with cooling at 15 °C/min.  Cyclic voltammetry was performed using a potentiostat 

with a scanning rate of 100 mV/s. The polymer solutions (1-2 mg/mL) were drop-cast on a 

platinum electrode and Ag/Ag+ was used as the reference electrode.  The reported values are 

referenced to Fc/Fc+ (-5.1 versus vacuum).  All electrochemistry experiments were 

performed in dry, degassed CH3CN under an argon atmosphere using 0.1 M 

tetrabutylammonium hexafluorophosphate as the electrolyte. UV-visible spectroscopy was 

obtained on a Varian Cary Bio 50 using polymer solutions in THF and thin films spun from 

CHCl3/o-dichlorobenzene solutions. The films were made by spin-coating 25 x 25 x 1 mm 

glass slides using 10 mg/mL polymer solutions at a spin rate of 1800 rpm on a spin-coater. 

X-ray crystal structure data for compound 2a (CCDC 885622 was deposited with the 

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK. 

 

2.7.2 Device Fabrication and Characterization 

All these devices were produced via a solution-based spin-casting fabrication process. All 

polymers were mixed with PC60BM (Sigma-Aldrich) (mixed 1:4 at 14 mg/mL for polymer 

and 56 mg/mL for PC60BM) then dissolved in o-dichlorobenzene and magnetically stirred at 

60 °C for 48 hours. ITO coated glass slides (Delta Technologies) were cleaned by 

consecutive 5 minute sonications in (i) isopropanol and acetone, (ii) precision cleaner 

detergent (dissolved in deionized water), (iii) ethanol and methanol, and then (iv) deionized 

water. The slides were then dried with nitrogen and cleaned with air plasma (Harrick 

Scientific plasma cleaner) for 10 minutes.  Filtered (0.45m) PEDOT:PSS (Clevios PTM) was 

spin-coated onto the prepared substrates (9000 rpm/65 sec) after first  being heated and 

stirred for one hour (80 °C, 1200 rpm). The casted PEDOT:PSS films were then annealed at 
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140 °C for 20 minutes. After cooling, the substrates were transferred to an argon-filled 

glovebox.  After 48 hours of mixing, the Polymer:PCBM solutions were filtered (0.2 m  

pore, VWR Scientific) and then stirred for an additional 5 hours at 60 °C . The solutions were 

heated up to 90 °C approximately 5 minutes prior to spin coating, after which the solutions 

were dropped onto the PEDOT:PSS-coated substrates by micropipette and spin-cast at 2000 

rpm for 45 seconds. The active layer of the films was covered with a petri dish and annealed 

at 70 °C for 10 minutes.  LiF (2 nm) and Al (120 nm) were successively thermally evaporated 

through a shadow mask under vacuum to complete the devices. J-V data was generated by 

illuminating the devices using an ETH quartzline lamp at 1 sun (calibrated using a crystalline 

silicon photodiode with a KG-5 filter). 

 

2.7.3 Computation Methods 

Electrostatic potential maps and frontier orbitals were generated using B3LYP/SVP 

density functional theory. All computations were performed using Gaussian09 34343434 

through the National Science Foundation’s Extreme Science and Engineering Discovery 

Environment (XSEDE) on the San Diego Supercomputer Center’s Gordon cluster.  All side 

chains were truncated to methyl groups and only dimer-sized oligomers were examined.   

 

2.7.4 Experimental Section 

 

 
 

2-Bromo-3-decylthiophene (S1). To a stirred solution of 3-decylthiophene (21.10 g, 94 

mmol) in 200 mL of glacial acetic acid was added N-bromosuccinimide (16.73 g, 94 mmol) 

in one portion.  The reaction mixture was stirred for 5 hours and diluted with 300 mL of H2O.  

The organic layer was extracted with hexane (x3) and the combined organic layers were 

washed subsequently with 1N NaOH, H2O and brine, and then dried over MgSO4. The 

solvents were removed in vacuo and the resulting crude product was purified by vacuum 

distillation to afford a pale yellow oil (27.0 g, 95 %). 1H NMR (300 MHz; CDCl3) δ 0.88 
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(3H, t, J = 6.6 Hz), 1.24-1.34 (14H, m), 1.57 (2H, p), 2.56 (2H, t, J =7.7 Hz), 6.79 (1H, d, J = 

5.7 Hz), 7.18 (1H, d, J = 5.6 Hz). 

 

3-Decyl-2-(trimethylsilylethynyl)thiophene (S2).   To a stirred, deoxygenated solution of 2-

bromo-3-decylthiophene (15.17 g, 50 mmol) dissolved in 75 mL of triethylamine was added 

351 mg of Pd(PPh3)2Cl2 (1 mol %), 191 mg of CuI (2 mol %) and 262 mg of PPh3 (2 mol %). 

Finally, trimethylsilyl acetylene (6.38 g, 65 mmol) was added and the reaction mixture was 

heated to 80 °C, under argon, for 16 hours.  The reaction mixture was then cooled to room 

temperature and most of the solvent was removed in vacuo.  Water was added to the resulting 

slurry and the organic layer was extracted with CH2Cl2 (x3).  The combined organic layers 

were washed with brine and dried over MgSO4. The solvents were removed in vacuo and the 

crude mixture was purified by flash chromatography on silica gel with hexanes as the eluent 

to afford the product as a yellow oil (12.99 g, 81 %). 1H NMR (400 MHz; CDCl3) δ 0.26 

(9H, s), 0.89 (3H, t, J = 6.8 Hz), 1.25-1.35 (14H, m), 1.62 (2H, m), 2.69 (2H, t, J = 7.8 Hz), 

6.83 (1H, d, J = 5.1 Hz), 7.12 (1H, d, J = 5.1 Hz); 13C NMR (100 MHz; CDCl3) δ 0.21, 

14.36, 22.92, 29.48, 29.58, 29.61, 29.67, 29.85, 29.94, 30.35, 32.15, 97.76, 100.85, 118.41, 

126.06, 128.25, 149.03. HRMS (APCI) m/z:  M+ calcd for C19H32SSi, 321.2067; found, 

321.2073, deviation 1.9 ppm. 

 

3-Decyl-2-ethynylthiophene (S3). To a stirred solution of S2 (10.69 g, 33.3 mmol) in 200 

mL of CH2Cl2/MeOH (1:1) was added K2CO3 (5.07 g, 36.7 mmol) in one portion.  The 

suspension was stirred at room temperature overnight (16 hours) and poured into H2O. The 

layers were separated and the aqueous layer was extracted with CH2Cl2 (x3). The combined 

organic layers were rinsed with brine and dried over MgSO4. The solvent was removed in 

vacuo and the crude product was purified on a silica plug with hexanes as the eluent to afford 

a yellow oil (7.20 g, 87 %). 1H NMR (400 MHz; CDCl3) δ 0.89 (3H, t, J = 6.7 Hz), 1.25-1.35 

(14H, m), 1.62 (2H, p), 2.71 (2H, t, J = 7.7 Hz), 3.43 (1H, s), 6.85 (1H, d, J = 5.0 Hz), 7.15 

(1H, d, J = 5.0 Hz); 13C NMR (100 MHz; CDCl3) δ 14.35, 22.92, 29.47, 29.57, 29.63, 29.80, 

29.81, 29.85, 30.43, 32.14, 76.97, 83.33, 117.19, 126.36, 128.24, 149.27. HRMS (ESI) m/z:  

M+ calcd for C16H24S, 249.1671; found, 249.1670, deviation 0.6 ppm. 
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2,2'-((2,5-Dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(3-decylthiophene) (1a).  To 

a stirred, deoxygenated solution of S3 (5.302 g, 21.34 mmol) in 120 mL of THF/Et3N (2:1) 

was added 1,4-dimethoxy-2,5-diidobenzene (4.04 g, 10.36 mmol). The solution was stirred at 

room temperature for 10 min (the 1,4-dimethoxy-2,5-diidobenzene does not dissolve 

completely at this point).  Then Pd(PPh3)2Cl2 (365 mg, 5 mol %) and CuI (198 mg, 10 mol 

%) were added to the reaction mixture and the flask was flushed with Ar for 10 min. The 

reaction mixture was stirred at room temperature for 2 days, until TLC indicated the 

disappearance of the dimethoxybenzene.  Most of the solvent was then removed in vacuo and 

the resulting slurry was poured into water and extracted with CH2Cl2 (x3). The combined 

organic layers were dried over MgSO4 and the solvent was removed in vacuo. The product 

was purified using column chromatography on silica using a gradient of hexane to 

hexane/ethyl acetate (99:1) to hexane/ethyl acetate (9:1) as the eluent.  The resulting yellow 

solid was then purified further by recrystalization from hexane/ethanol. The product was 

collected by filtration and rinsed with cold ethanol to afford bright yellow crystals (5.81 g, 89 

%), mp 84 °C. 1H NMR (400 MHz; CDCl3) δ 0.87 (6H, t, J = 6.8 Hz), 1.22-1.40 (28H, m), 

1.68 (4H, p, J = 7.3 Hz), 2.80 (4H, t, J = 7.6 Hz), 3.89 (6H, s), 6.89 (2H, d, J = 5.1 Hz), 6.97 

(2H, s), 7.19 (2H, d, J = 5.1 Hz); 13C NMR (150 MHz; CDCl3) δ 14.33, 22.88, 29.55, 29.59, 

29.66, 29.77, 29.85, 29.87, 30.47, 32.10, 56.56, 88.44, 91.84, 113.53, 115.07, 118.43, 126.42, 

128.45, 148.45, 153.89. HRMS (APCI) m/z:  M+ calcd for C40H54O2S2, 631.3638; found, 

631.3653, deviation 2.4 ppm. 

 

2,6-Bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-b']difuran (2a). Compound 1a 

(8.28 g, 13.1 mmol) was dissolved in 150 mL of CH2Cl2 and cooled to 0 °C.  While stirring, 

a solution of 3 equiv of iodine (9.99 g, 39.3 mmol) in 200 mL of CH2Cl2/hexanes (3:1) was 

added dropwise over 10 minutes.  Upon completion of the addition, the reaction mixture was 

stirred at 0 °C for 4 hours and was quenched by the addition of 50 mL of saturated aqueous 

sodium thiosulfate solution. The layers were separated and the aqueous layer was extracted 
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with CH2Cl2 (x2). The organic layers were combined, dried over MgSO4 and the solvents 

were removed in vacuo. The crude product was purified by recrystalization from 

hexanes/ethanol and collected by filtration, followed by rinsing with cold ethanol to afford 

fine, yellow crystals (7.89 g, 70 %), mp 104 °C. 1H NMR (300 MHz; CDCl3) δ 0.88 (6H, t, J 

= 6.6 Hz), 1.22-1.40 (28H, m), 1.68 (4H, p, J = 7.2 Hz), 2.90 (4H, t, J =7.7 Hz), 7.05 (2H, d, 

J = 5.1 Hz), 7.42 (2H, d, J = 5.1 Hz), 7.47 (2H, s); 13C NMR (75 MHz; CDCl3) δ 14.38, 

22.92, 29.59, 29.64, 29.72, 29.87, 29.94, 30.24, 31.03, 32.15, 64.63, 103.03, 124.67, 127.09, 

129.92, 131.39, 145.42, 151.54, 152.43. HRMS (ESI) m/z:  M+ calcd for C38H48I2O2S2, 

855.1258; found, 855.1252, deviation 0.7 ppm. UV-Vis (THF) λmax = 259 nm, 360 nm. 

 
 

3,7-Di(dec-1-yn-1-yl)-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-b']difuran (3a).35 To a 

stirred, deoxygenated solution of 2a (2.185 g, 2.6 mmol) and 1-decyne (1.41 g, 10.2 mmol) 

in 60 mL of DMF/Et2NH (1:1) was added Pd(PPh3)2Cl2 (107 mg, 6 mol %) and CuI (29 mg, 

6 mol %). The solution was stirred under argon, heated to 65 °C and stirred for 8 hours.  The 

reaction mixture was cooled to room temperature, poured into H2O and extracted with 

CH2Cl2 (x3).  The combined organic layers were washed with H2O (x2), followed by brine 

(x1), dried over MgSO4 and the solvent was removed in vacuo. The crude product was 

purified by chromatography on silica gel using a gradient of hexane to hexane/CH2Cl2 (98:2) 

to hexane/CH2Cl2 (95:5) as the eluent to afford light yellow crystals (2.14 g, 96 %), mp 56 

°C. 1H NMR (400 MHz; CDCl3) δ 0.89 (12H, m), 1.22-1.45 (48H, m), 1.55 (4H, m), 1.72 

(8H, m), 2.60 (4H, t, J = 7.1 Hz), 3.07 (4H, t, J = 7.8 Hz), 6.89 (2H, d, J = 5.1 Hz), 7.34 (2H, 

d, J = 5.1 Hz), 7.62 (2H, s); 13C NMR (75 MHz; CDCl3) δ 14.35, 20.34, 22.92, 28.93, 29.26, 

29.32, 29.42, 29.52, 29.60, 29.76, 29.82, 29.88, 29.89, 30.35, 31.22, 32.12, 32.13, 78.14, 

99.79, 100.64, 101.10, 126.13, 126.18, 128.47, 130.22, 143.73, 151.04, 154.14. HRMS (ESI) 

m/z:  M+ calcd for C58H82O2S2, 875.5829; found, 875.5814, deviation 1.7 ppm. UV-Vis 

(THF) λmax = 235 nm, 386 nm. 
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3,7-Didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-b']difuran (4a.)  Dialkyne 3a 

(3.40 g, 4.0 mmol) was dissolved in 20 mL of THF/ethanol (1:1) and Pd/C (10 %, 426 mg, 

0.4 mmol) was added to the solution.  The resulting mixture was placed in a Parr bomb 

apparatus, flushed twice with H2 and stirred under pressurized H2 (500 PSI) for 72 hours at 

room temperature.  The reaction mixture was filtered through a pad of Celite to remove the 

Pd/C and rinsed with THF (x2).  The solvent was removed in vacuo and the resulting solid 

was purified on a silica gel plug with hexane as the eluent to afford a pale yellow solid (3.35 

g, 95 %), mp 57 °C.  1H NMR (400 MHz; CDCl3) δ 0.86 (12H, m), 1.20-1.42 (56H, m), 1.63 

(4H, p, J = 7.2 Hz), 1.72 (4H, p, J =7.5 Hz), 2.80 (8H, m), 7.02 (2H, d, J = 5.1 Hz), 7.36 (2H, 

d, J = 5.1 Hz), 7.53 (2H, s); 13C NMR (150 MHz; CDCl3) δ 14.34, 22.92, 24.69, 29.58, 

29.65, 29.66, 29.70, 29.78, 29.85, 29.86, 29.93, 31.01, 32.13, 32.14, 100.48, 118.92, 126.00, 

126.02, 127.94, 129.63, 143.62, 146.73, 151.39. HRMS (ESI) m/z:  M+ calcd for C58H90O2S2, 

883.6455; found, 883.6450, deviation 0.6 ppm. UV-Vis (THF) λmax = 248 nm, 346 nm. 

 

 
 

(5,5'-(3,7-Didecylbenzo[1,2-b:4,5-b']difuran-2,6-diyl)bis(4-decylthiophene-5,2-

diyl))bis(trimethylstannane) (5a).  To a stirred solution of 4a (884 mg, 1.0 mmol) in 20 mL 

of anhydrous THF, under argon, at 0 °C was added n-BuLi in hexanes (2.5 M, 1.0 mL, 2.5 

mmol) dropwise. The reaction mixture was warmed to room temperature and stirred for 2 

hours. A solution of trimethylstannyl chloride in THF (1.0 M, 2.75 mL, 2.75 mmol) was then 

added to the reaction at 0 °C and the reaction was warmed to room temperature, stirred 

overnight and poured into H2O. The layers were separated and the aqueous layer was 

extracted with ether (x3).  The combined organic layers were dried over MgSO4 and the 

solvent was removed in vacuo.  The resulting reddish oil was heated at 50 °C under vacuum 

to remove residual Me3SnCl (1.14 g, 94 %). 1H NMR (400 MHz; CDCl3) δ 0.41 (81H, s), 

0.87 (12H, m), 1.20-1.42 (56H, m), 1.64 (4H, p, J = 7.3 Hz), 1.73 (4H, p, J = 7.6 Hz), 2.82 

(8H, m), 7.07 (2H, s), 7.51 (2H, s); 13C NMR (100 MHz; CDCl3) δ -7.98, 14.36, 22.93, 

24.73, 29.56, 29.60, 29.67, 29.70, 29.79, 29.83, 29.88, 29.90, 29.92, 31.23, 32.15, 32.17, 
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100.32, 118.50, 127.97, 131.85, 137.89, 138.83, 144.58, 147.12, 151.37. HRMS (APCI) m/z:  

M+ calcd for C64H106O2S2Sn2, 1209.5765; found, 1209.5747, deviation 1.5 ppm. 

 

 

 

2-Bromo-3-decyl-5-iodothiophene (S4).36 To a stirred solution of 2-bromo-3-

decylthiophene (5.70 g, 18.8 mmol) in 35 mL of CHCl3/AcOH (4:3) was added N-

iodosuccinimide (5.92 g, 26.3 mmol) in one portion.  The reaction was stirred in the absence 

of light for 16 hours and poured into H2O.  The layers were separated and the aqueous layer 

was extracted with hexanes (x3). The combined organic layers were then neutralized with 1 

M KOH, washed subsequently with H2O and brine, and dried over MgSO4.  The solvent was 

removed in vacuo and the crude oil was purified by column chromatography on silica with 

hexanes as the eluent to afford a pale pink oil (7.80 g, 97 %). 1H NMR (400 MHz; CDCl3) δ 

0.88 (3H, t, J = 6.6 Hz), 1.24-1.34 (14H, m), 1.53 (2H, m), 2.52 (2H, t, J = 7.7 Hz), 6.96 (1H, 

s); 13C NMR (100 MHz; CDCl3) δ 14.38, 22.93, 29.36, 29.41, 29.56, 29.60, 29.77, 29.83, 

29.87, 32.13, 71.27, 111.90, 138.16, 144.43. HRMS (APCI) m/z:  M+ calcd for C14H22BrIS2, 

428.9743; found, 428.9751, deviation 1.9 ppm. 

 

((5-Bromo-4-decylthiophen-2-yl)ethynyl)trimethylsilane (S5).  To a stirred deoxygenated 

solution of 2-bromo-3-decyl-5-iodothiophene (7.80 g, 18.2 mmol) in 50 mL of THF/NEt3 

(1:1) was added Pd(PPh3)2Cl2 (319 mg, 2.5 mol %) and CuI (173 mg, 5 mol %). The 

resulting suspension was stirred for 10 minutes under argon before trimethylsilyl acetylene 

(1.88 g, 19.1 mmol) was added dropwise and the reaction mixture was stirred at room 

temperature under argon.  After 18 hours, TLC analysis indicated complete consumption of 

the starting material and most of the solvent was removed in vacuo. The resulting dark slurry 

was then filtered and rinsed with hexanes.  The solvent was removed in vacuo and the crude 

oil was purified on a silica gel plug with hexanes as the eluent to afford a yellow oil (7.04 g,  

97 %). 1H NMR (400 MHz; CDCl3) δ 0.23 (9H, s), 0.88 (3H, t, J = 6.8 Hz), 1.24-1.34 (14H, 

m), 1.53 (2H, p, J = 7.2 Hz), 2.49 (2H, t, J = 7.6 Hz), 6.92 (1H, s); 13C NMR (100 MHz; 
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CDCl3) δ 0.02, 14.34, 22.92, 29.31, 29.55, 29.58, 29.61, 29.76, 29.77, 29.82, 32.13, 97.16, 

99.93, 110.22, 123.15, 133.77, 142.36. HRMS (APCI) m/z:  M+ calcd for C19H31BrSSi, 

399.1172; found, 399.1171, deviation 0.2 ppm. 

 

2-Bromo-3-decyl-5-ethynylthiophene (S6). To a stirred solution of S5 (7.04 g, 17.6 mmol) 

in 100 mL of CH2Cl2/MeOH (1:1) was added K2CO3 (2.68 g, 19.4 mmol) in one portion.  

The suspension was stirred at room temperature for 8 hours and poured into H2O. The 

organic layer was separated and the aqueous layer was extracted with CH2Cl2 (x3). The 

combined organic layers were rinsed with brine and dried over MgSO4. The solvent was 

removed in vacuo and the crude product was purified on a silica gel plug with hexanes as the 

eluent to afford an orange oil (5.52 g, 96 %). 1H NMR (400 MHz; CDCl3) δ 0.88 (3H, t, J = 

6.7 Hz), 1.24-1.34 (14H, m), 1.55 (2H, p, J = 7.0 Hz), 2.51 (2H, t, J =7.6 Hz), 3.35 (1H, s), 

6.96 (1H, s); 13C NMR (75 MHz; CDCl3) δ 14.35, 22.92, 29.34, 29.56, 29.56, 29.60, 29.77, 

29.82, 29.94, 32.12, 76.69, 82.19, 110.50, 121.94, 134.21, 142.39. HRMS (APCI) m/z:  M+ 

calcd for C16H23BrS, 327.0777; found, 327.0768, deviation 2.9 ppm. 

 

 

Note:  the iodocyclization reaction was performed on compound S7 and the resulting 

benzodifuran was insoluble in organic solvents at room temperature.  Attempts were made to 

attach 1-decyne through Sonogashira chemistry; however, the elevated temperatures required 

lead to a loss of selectivity of the aryl iodide over the aryl bromide in the cross-coupling 

reaction. Consequently, the product was obtained in low yields along with multiple side-

products. The bromines on compound S7 were thus removed to facilitate alkynylation at the 

appropriate site on the molecule. 

 

5,5'-((2,5-Dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(2-bromo-3-decylthiophene) 

(S7).  To a stirred, deoxygenated solution of S6 (12.75 g, 39.0 mmol) in 200 mL of 

THF/Et3N (2:1) was added 1,4-dimethoxy-2,5-diidobenzene (6.76 g, 17.3 mmol). The 
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solution was stirred at room temperature for 10 minutes (the 1,4-dimethoxy-2,5-diidobenzene 

does not dissolve completely at this point).  Then Pd(PPh3)2Cl2 (364 mg, 3 mol %), CuI (198 

mg, 6 mol %) and PPh3 (273 mg, 6 mol %) were added to the reaction mixture and the flask 

was flushed with Ar for 10 minutes. The reaction mixture was stirred at room temperature, 

under argon, for 2 days. Most of the solvent was then removed in vacuo and the resulting 

slurry was poured into water and extracted with CH2Cl2 (x3). The combined organic layers 

were dried over MgSO4 and the solvent was removed in vacuo. The product was purified 

using column chromatography on silica using hexane/CH2Cl2 (3:1) to afford a yellow, flaky 

solid (11.17 g, 82 %), mp 72 °C.  1H NMR (400 MHz; CDCl3) δ 0.88 (6H, t, J = 6.8 Hz), 

1.23-1.35 (28H, m), 1.57 (4H, m), 2.53 (4H, t, J = 7.6 Hz), 3.88 (6H, s), 6.96 (2H, s), 7.01 

(2H, s); 13C NMR (100 MHz; CDCl3) δ 14.35, 22.91, 29.33, 29.54, 29.62, 29.77, 29.79, 

29.82, 29.86, 32.12. HRMS (APCI) m/z:  M+ calcd for C40H52Br2O2S2, 787.1848; found, 

787.1835, deviation 1.7 ppm. 

 

5,5'-((2,5-Dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(3-decylthiophene) (1b).  To 

a stirred solution of S7 (11.17 g, 14.2 mmol) in 125 ml of dry THF at -78 °C, under argon, 

was added n-BuLi in hexanes (2.5 M, 12.5 mL, 31.2 mmol) dropwise. The reaction mixture 

was stirred at -78 °C for 1 hour, warmed to room temperature and then quenched with 50 mL 

of H2O. The layers were separated and the aqueous layer was extracted with diethyl ether.  

The combined organic layers were washed with brine and dried over MgSO4.  The solvent 

was removed in vacuo and the resulting yellow solid was passed through a short pad of silica 

gel with hexane/CH2Cl2 (2:1) as the eluent to afford a flaky yellow solid (8.94 g, 99 %), mp 

51 °C. 1H NMR (400 MHz; CDCl3) δ 0.88 (6H, t, J = 6.8), 1.23-1.35 (28H, m), 1.60 (4H, p, J 

= 7.4 Hz), 2.57 (4H, t, J =7.6 Hz), 3.88 (6H, s), 6.89 (2H, d), 6.98 (2H, s), 7.16 (2H, d); 13C 

NMR (100 MHz; CDCl3) δ 14.31, 22.87, 29.38, 29.52, 29.63, 29.77, 29.80, 30.45, 30.57, 

32.08, 56.50, 88.90, 89.18, 113.32, 115.37, 122.65, 122.84, 133.60, 143.47, 153.85. HRMS 

(ESI) m/z:  M+ calcd for C40H54O2S2, 631.3638; found, 631.3623, deviation 2.4 ppm. 
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2,6-Bis(4-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-b']difuran (2b). Compound 1b 

(8.94 g, 14.1 mmol) was dissolved in 150 mL of CH2Cl2 and cooled to 0 °C.  While stirring, 

a solution of 3 equiv of iodine (10.74 g, 42.3 mmol) in 200 mL of CH2Cl2/hexanes (3:1) was 

added dropwise over 10 minutes.  Upon completion of the addition, the reaction mixture was 

stirred at 0 °C for 4 hours and was quenched by the addition of 50 mL of saturated aqueous 

sodium thiosulfate solution. The layers were separated and the aqueous layer was extracted 

with CH2Cl2 (x2). The organic layers were combined, dried over MgSO4 and the solvent was 

removed in vacuo. The resulting crude product was recrystalized from ethanol/CHCl3 and 

collected by filtration, followed by rinsing with cold ethanol, to afford fine, yellow crystals 

(9.88 g, 82 %), mp 146 °C. 1H NMR (400 MHz; CDCl3) δ 0.88 (6H, t, J = 6.7 Hz), 1.23-1.40 

(28H, m), 1.68 (4H, p, J = 7.4 Hz), 2.67 (4H, t, J = 7.7 Hz), 7.07 (2H, s), 7.42 (2H, s), 7.78 

(2H, s); 13C NMR (150 MHz; CDCl3) δ 14.31, 22.92, 29.54, 29.57, 29.71, 29.85, 29.87, 

30.65, 30.71, 32.16, 60.38, 102.73, 122.63, 128.85, 131.71, 132.09, 144.26, 151.27, 151.87. 

HRMS (APCI) m/z:  M+ calcd for C38H48I2O2S2, 855.1258; found, 855.1254, deviation 0.5 

ppm. UV-Vis (THF) λmax = 256 nm, 360 nm, 379 nm, 401 nm. 

 

3,7-Di(dec-1-yn-1-yl)-2,6-bis(4-decylthiophen-2-yl)benzo[1,2-b:4,5-b']difuran (3b).  To a 

stirred, deoxygenated solution of 2b (4.27 g, 5.0 mmol) and 1-decyne (2.77 g, 20.0 mmol) in 

110 mL of DMF/Et2NH (1:1) was added Pd(PPh3)2Cl2 (175 mg, 5 mol %) and CuI (48 mg, 5 

mol %). The solution was stirred under argon, heated to 80 °C and stirred overnight.  The 

reaction mixture was cooled to room temperature, poured into H2O and extracted with 

CH2Cl2 (x3).  The combined organic layers were washed with H2O (x2), followed by brine 

(x1), dried over MgSO4 and the solvent was removed in vacuo. The crude product was 

purified by chromatography on silica gel using a gradient of hexane to hexane/CH2Cl2 (95:5) 

as the eluent to afford bright yellow crystals (4.02 g, 92 %), mp 95 °C. 1H NMR (400 MHz; 
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CDCl3) δ 0.92 (12H, m), 1.26-1.45 (48H, m), 1.59 (4H, p, J = 7.0 Hz), 1.65-1.80 (8H, m), 

2.65 (8H, m), 7.00 (2H, s), 7.57 (2H, s), 7.69 (2H, s); 13C NMR (100 MHz; CDCl3) δ 14.36, 

20.34, 22.95, 29.04, 29.33, 29.47, 29.53, 29.59, 29.61, 29.76, 29.88, 29.89, 30.64, 30.67, 

32.16, 71.74, 99.01, 100.03, 101.10, 121.74, 127.19, 128.84, 132.32, 144.00, 150.91, 153.59. 

HRMS (APCI) m/z:  M+ calcd for C58H82O2S2, 875.5829; found, 875.5814, deviation 1.7 

ppm. UV-Vis (THF) λmax = 231nm, 366 nm, 386 nm, 410 nm. 

 

 

 

3,7-Didecyl-2,6-bis(4-decylthiophen-2-yl)benzo[1,2-b:4,5-b']difuran (4b).  Dialkyne 3b 

(3.55 g, 4.2 mmol) was dissolved in 30 mL of THF and Pd/C (10 %, 4 47mg, 0.4 mmol) was 

added to the solution.  The resulting mixture was placed in a Parr bomb apparatus, flushed 

twice with H2 and stirred under pressurized H2 (750 PSI) for 6 days at room temperature.  

The reaction mixture was filtered through a pad of Celite to remove the Pd/C and rinsed with 

THF (x2).  The solvent was removed in vacuo and the resulting solid was purified on a silica 

gel plug with hexane as the eluent to afford a bright yellow solid (3.96 g, 95 %), mp 75 °C. 
1H NMR (400 MHz; CDCl3) δ 0.88 (12H, m), 1.23-1.40 (56H, m), 1.48 (4H, m), 1.68 (4H, 

m), 1.75 (4H, m), 2.66 (4H, t, J = 7.6 Hz), 2.93 (4H, t, J = 7.7 Hz), 6.96 (2H, d, J = 1.3 Hz), 

7.32 (2H, d, J = 1.4 Hz), 7.48 (2H, s); 13C NMR (150 MHz; CDCl3) δ 14.34, 22.93, 24.67, 

29.45, 29.57, 29.59, 29.73, 29.79, 29.85, 29.86, 29.88, 30.08, 30.69, 32.14, 32.15, 100.08, 

116.33, 120.45, 126.22, 128.93, 133.20, 147.47, 151.04. HRMS (APCI) m/z:  M+ calcd for 

C58H90O2S2, 883.6455; found, 883.6467, deviation 1.4 ppm. UV-Vis (THF) λmax = 239 nm, 

376 nm, 397 nm. 

 

(5,5'-(3,7-Didecylbenzo[1,2-b:4,5-b']difuran-2,6-diyl)bis(3-decylthiophene-5,2-

diyl))bis(trimethylstannane) (5b).  To a stirred solution of 4b (221 mg, 0.25 mmol) in 10 

mL of anhydrous THF, under argon, at 0 °C was added n-BuLi in hexanes (2.5 M, 0.25 mL, 

0.625 mmol) dropwise. The reaction mixture was warmed to room temperature and stirred 
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for 2 hours. A solution of trimethylstannyl chloride in THF (1.0 M, 0.69 mL, 0.69 mmol) was 

then added to the reaction at 0 °C and the reaction was warmed to room temperature, stirred 

overnight and poured into H2O. The layers were separated and the aqueous layer was 

extracted with ether (x3).  The combined organic layers were dried over MgSO4 and the 

solvent was removed in vacuo.  The resulting yellow oil was heated at 50 °C under a vacuum 

to remove residual Me3SnCl (284 mg, 94 %). 1H NMR (400 MHz; CDCl3) δ 0.43 (18H, s), 

0.88 (12H, m), 1.23-1.40 (56H, m), 1.49 (4H, m), 1.65 (4H, p, J = 7.6 Hz), 1.76 (4H, p, J = 

7.5 Hz), 2.64 (4H, t, J = 7.8 Hz), 2.94 (4H, t, J = 7.7 Hz), 7.45 (2H, s), 7.48 (2H, s); 13C 

NMR (100 MHz; CDCl3) δ -7.64, 14.37, 22.94, 24.70, 29.43, 29.61, 29.80, 29.85, 29.87, 

29.90, 29.92, 30.07, 32.17, 32.31, 32.99, 99.97, 116.12, 127.16, 128.91, 132.91, 138.57, 

147.62, 151.03, 151.50. HRMS (APCI) m/z:  M+ calcd for C64H106O2S2Sn2, 1209.5765; 

found, 1209.5744, deviation 1.7 ppm. 

 

General Polymerization Procedure (PTinBDFID and PToutBDFID) with Pd2(dba)3.  To a 

stirred, deoxygenated solution of bisstannane (5a or 5b) and isoindigo 6 in 10 mL of toluene 

was added Pd2(dba)3 (2 mol %) and tri(o-tolyl)phosphine (8 mol %).  The reaction mixture 

was heated to reflux, under argon, and stirred for 4 hours. A few drops of 

trimethyl(phenyl)tin was added and the mixture was stirred for 4 hours at reflux.  A few 

drops of iodobenzene were added and the mixture was stirred overnight at reflux. After 

cooling to room temperature, the polymer was precipitated in methanol. The precipitated 

polymer was filtered through a cellulose extraction thimble, placed into a Soxhlet extractor 

and washed with methanol, acetone, and CHCl3. The polymer was recovered from the CHCl3 

extract by evaporation of the solvent. 

 

Polymer PTinBDFID: synthesized from bisstannane 5a (479 mg, 94 %). 1H NMR (400 

MHz; CDCl3) δ. 0.88, 1.15-1.50, 1.73, 1.80, 2.02, 2.88, 2.93, 3.77, 7.04, 7.35, 7.58, 9.26. 

UV-Vis (CHCl3) λmax = 373 nm, 605 nm; UV-Vis (film) λmax = 415 nm, 653 nm. GPC Mn = 

32664, Mw = 76253, PDI = 2.33. TGA Td = 397 °C. Tg = not observed. 

 

Polymer PToutBDFID: synthesized from bisstannane 5b (365 mg, 86 %). 1H NMR (400 

MHz; CDCl3) δ 0.88, 1.10-1.55, 1.76, 2.68, 2.83, 3.00, 3.76, 6.97, 7.23, 7.42, 7.53, 9.29.  
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UV-Vis (CHCl3) λmax = 400 nm, 599 nm; UV-Vis (film) λmax = 403 nm, 612 nm. GPC Mn = 

17384, Mw = 33085, PDI = 1.90. TGA Td = 407 °C. Tg = not observed. 

 

General Polymerization Procedure (PTinBDFID and PToutBDFID) with Pd(PPh3)4.  To a 

stirred, deoxygenated solution of bisstannane (5a or 5b) and isoindigo 6 in 10 mL of toluene 

was added Pd(PPh3)4 (5 mol %).  The reaction mixture was heated to reflux, under argon, and 

stirred for 48 hours. A few drops of trimethyl(phenyl)tin was added and the mixture was 

stirred for 4 hours at reflux.  A few drops of iodobenzene were added and the mixture was 

stirred overnight at reflux. After cooling to room temperature, the polymer was precipitated 

in methanol. The precipitated polymer was filtered through a cellulose extraction thimble, 

placed into a Soxhlet extractor and washed with methanol, acetone, and CHCl3. The polymer 

was recovered from the CHCl3 extract by evaporation of the solvent. 

 

Polymer PTinBDFID: synthesized from bisstannane 5a (671 mg, 79 %).  UV-Vis (CHCl3) 

λmax = 397 nm, 596 nm; UV-Vis (film) λmax = 401 nm, 617 nm. GPC Mn = 35081, Mw = 

18848, PDI = 1.86.  

 

Polymer PToutBDFID: synthesized from bisstannane 5b (710 mg, 82 %).  UV-Vis (CHCl3) 

λmax = 379 nm, 594 nm; UV-Vis (film) λmax = 404 nm, 611 nm. GPC Mn = 20528, Mw = 

15662, PDI = 1.31. 
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2.7.5. Spectral and Analytic Data

 

Figure S2.1. 1H NMR of 3-decyl-2-(trimethylsilylethynyl)-thiophene (S2). 
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Figure S2.2.  13C NMR of 3-decyl-2-(2-(trimethylsilyl)ethynyl)-thiophene (S2). 
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Figure S2.3. 1H NMR of 3-decyl-2-ethynylthiophene (S3). 
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Figure S2.4. 13C NMR of 3-decyl-2-ethynylthiophene (S3). 
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Figure S2.5. 1H NMR of 2,2'-((2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(3-
decylthiophene) (1a). 
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Figure S2.6. 13C NMR of 2,2'-((2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(3-
decylthiophene) (1a). 
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Figure S2.7. 1H NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-b']difuran 
(2a). 
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Figure S2.8. 13C NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-b']difuran 
(2a). 
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Figure S2.9. 1H  NMR of 3,7-di(dec-1-yn-1-yl)-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-
b:4,5-b']difuran (3a). 
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Figure S2.10. 13C NMR of 3,7-di(dec-1-yn-1-yl)-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-
b:4,5-b']difuran (3a). 
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Figure S2.11. 1H NMR of 3,7-didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-
b']difuran (4a). 
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Figure S2.12. 13C NMR of 3,7-didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-
b']difuran (4a). 
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Figure S2.13. 1H NMR of (5,5'-(3,7-didecylbenzo[1,2-b:4,5-b']difuran-2,6-diyl)bis(4-
decylthiophene-5,2-diyl))bis(trimethylstannane) (5a). 



www.manaraa.com

73 

 
Figure S2.14. 13C NMR of (5,5'-(3,7-didecylbenzo[1,2-b:4,5-b']difuran-2,6-diyl)bis(4-
decylthiophene-5,2-diyl))bis(trimethylstannane) (5a). 
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Figure S2.15. 1H NMR of 2-bromo-3-decyl-5-iodothiophene (S4). 
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Figure S2.16. 13C NMR of 2-bromo-3-decyl-5-iodothiophene (S4).  
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Figure S2.17. 1H NMR of ((5-bromo-4-decylthiophen-2-yl)ethynyl)trimethylsilane (S5). 
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Figure S2.18. 13C NMR of ((5-bromo-4-decylthiophen-2-yl)ethynyl)trimethylsilane (S5). 
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Figure S2.19. 1H NMR of 2-bromo-3-decyl-5-ethynylthiophene (S6). 
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Figure S2.20. 13C NRM of 2-bromo-3-decyl-5-ethynylthiophene (S6). 
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Figure S2.21. 1H NMR of 5,5'-((2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(2-
bromo-3-decylthiophene) (S7). 
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Figure S2.22. 13C NMR of 5,5'-((2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(2-
bromo-3-decylthiophene) (S7). 
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Figure S2.23. 1H NMR of 5,5'-((2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(3-
decylthiophene)  (1b). 
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Figure S2.24. 13C NMR of 5,5'-((2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(3-
decylthiophene)  (1b). 
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Figure S2.25. 1H NMR of 2,6-bis(4-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-
b']difuran (2b). 
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Figure S2.26. 13C NMR of 2,6-bis(4-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-
b']difuran (2b). 



www.manaraa.com

86 

Figure S2.27. 1H NMR of 3,7-di(dec-1-yn-1-yl)-2,6-bis(4-decylthiophen-2-yl)benzo[1,2-
b:4,5-b']difuran (3b). 
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Figure S2.28. 13C NMR of 3,7-di(dec-1-yn-1-yl)-2,6-bis(4-decylthiophen-2-yl)benzo[1,2-
b:4,5-b']difuran (3b). 
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Figure S2.29. 1H NMR of 3,7-didecyl-2,6-bis(4-decylthiophen-2-yl)benzo[1,2-b:4,5-
b']difuran (4b). 
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Figure S2.30. 13C NMR of 3,7-didecyl-2,6-bis(4-decylthiophen-2-yl)benzo[1,2-b:4,5-
b']difuran (4b). 
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Figure S2.31. 1H NMR of (5,5'-(3,7-didecylbenzo[1,2-b:4,5-b']difuran-2,6-diyl)bis(3-
decylthiophene-5,2-diyl))bis(trimethylstannane) (5b). 



www.manaraa.com

91 

Figure S2.32. 13C NMR of (5,5'-(3,7-didecylbenzo[1,2-b:4,5-b']difuran-2,6-diyl)bis(3-
decylthiophene-5,2-diyl))bis(trimethylstannane) (5b). 
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Figure S2.33. 1H NMR of PToutBDFID. 
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Figure S2.34. 1H NMR of PToutBDFID. 
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Figure S2.35.  Normalized UV-vis absorption spectra of 2a, 3a, 4a, 2b, 3b, and 4b solutions 
in THF. 
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Table S2.1. Optical properties of Compounds 2a, 3a, 4a, 2b, 3b, and 4b. 
 

Compound 2a 3a 4a 2b 3b 4b 

λmax (nm) 360 386 346 379, 
401 

386, 
410 

376, 
397 

 

 
 
Table S2. Electronic and optical properties of PTBDFID. 
 

Polymer 

(eV) (eV) 

HOMOa  
(eV) 

LUMO
b (eV) 

Eg
opt 

(eV)
c 

Eg
EC 

(eV)d 

PToutBDFID 0.56 -1.35 -5.66 -3.75 1.67 1.91 
PTinBDFID 0.60 -1.32 -5.70 -3.78 1.58 1.88 

a HOMO= -(  + 5.1) (eV).. b LUMO = -(  + 5.1) (eV).                         
c Estimated from the optical absorption edge. d Onset of potentials (vs 
Fc). 

 
 

 
Figure S2.36.  Normalized UV-vis absorption spectra of solutions (CHCl3) and thin films of 
PTinBDFID and PTinBDFID polymerized using Pd(PPh3)4. 
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Figure S2.37.  Normalized UV-vis absorption spectra of solutions of PTinBDFID and 
PTinBDFID polymers (polymerized using Pd2(dba)3/P(o-tol)3) in THF and CHCl3. 
 
 

 
Table S3. Optical properties of PToutBDFID and PTinBDFID. 
 

Polymer Solvent 
λmax 

high-energy 
(nm) 

λmax 
low-energy 

(nm) 
    

PToutBDFID THF 398 599 
    

PToutBDFID CHCl3 373 608 
 

PTinBDFID THF 398 582 
    

PTinBDFID CHCl3 400 598 
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Figure S2.38.  Cyclic voltammetry traces of PTinBDFID. 
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Figure S2.39.  Cyclic voltammetry traces of PToutBDFID. 
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Figure S2.40.  Thermal Gravometric Analysis of PTinBDFID (top) and PToutBDFID 
(bottom). 
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Figure S2.41.  Differential Scanning Calorimetry of PTinBDFID (top) and PToutBDFID 
(bottom). 
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Figure S2.42.  The electrostatic potential maps and frontier orbitals for TPinBDFID and 
TPoutBDFID dimers. 
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CHAPTER 3 

 

Influence of heteroatoms on photovoltaic performance of donor-acceptor copolymers 

based on 2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b’]difurans and diketopyrrolopyrrole. 
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3.1 ABSTRACT 

Donor–acceptor conjugated polymers based on the novel donor 3,7-didodecyl-2,6-

di(thiophen-2-yl)benzo[1,2-b:4,5-b']difuran, and 1,4-diketopyrrolo[3,4-c]pyrrole as the 

acceptor were synthesized via the Stille cross-coupling reaction. The alkyl chains on the 

diketopyrrolopyrrole monomers were varied to engineer the solubility and morphology of the 

materials. Thiophene and furan moieties were used to flank the DPP group and the impact of 

these heterocycles on the polymers’ properties evaluated. All of the polymers have similar 

optoelectronic properties with optical band-gaps of 1.3-1.4 eV, LUMO levels of -3.7 to -3.8 

eV and HOMO levels of -5.5 to -5.6 eV. The furan-containing polymers have better 

solubility than the all-thiophene polymers, as significantly higher molecular weight materials 

of the former were readily dissolved. When the polymers were used as donor materials along 

with PC71BM as the electron-acceptor in bulk-heterojunction photovoltaic cells, power 

conversion efficiencies of up to 2.9% were obtained, with the furan-containing polymers 

giving the best results. 

3.2 INTRODUCTION 

Since their discovery over 35 years ago, conjugated polymers have evolved from being 

mere academic curiosities into a booming global enterprise in both academic and industrial 

labs.1, 2 These organic semiconductors are being evaluated for use in a range of 

optoelectronic applications as they offer several advantages over their inorganic counterparts, 

including the potential to fabricate large-area films using low cost solution processing 

techniques, to manufacture lightweight and flexible devices and to alter the materials’ 

properties through chemical synthesis.3-6 Currently, the synthesis of material comprising 

alternating electron-donating and electron-accepting moieties is an effective way to alter its 

optical and electronic properties.7, 8 Using this approach, a number of materials possessing 

beneficial properties, such as broad absorption bands, LUMO levels that are appropriately 

offset from the acceptor, low-lying HOMO levels, and high charge carrier mobilities for use 

as donor-materials in bulk-heterojunction organic photovoltaic cells (OPVs) have been 
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synthesized. As a result, power conversion efficiencies (PCE)s for polymer OPVs have 

exceeded 9%.9-12 

The steady increase in the performance of OPVs over the past few years is a combination 

of many improvements including the development of new device architectures, the band-gap 

engineering of the donor materials, and the optimization of film morphology. Early success 

in the development of devices based on organic semiconductors was first seen with 

regioregular poly(3-hexylthiophene) (P3HT), which possesses excellent solubility, oxidative 

stability, and good charge carrier mobility.13, 14 However, since P3HT has a high-lying 

HOMO level and a fairly wide band-gap, a number of new thiophene-based materials have 

been developed in order to address these issues while maintaining high charge carrier 

mobility. In contrast, furan has not been widely used for the synthesis of conjugated 

polymers, largely due to the difficulty involved with synthesizing substituted furans. 

However, furan has several advantages over thiophene making it a promising building block 

for developing conjugated polymers. For example, furan is isoelectronic to thiophene, but 

less aromatic, which can facilitate the formation of quiniodal structures, stabilizing the 

HOMO level.15 Additionally, furan based polymers have better solubility than their 

thiophene containing analogs.16, 17  

Previously, the synthesis of a furan-containing monomer 3,6-di(2-furanyl)-1,4-

diketopyrrolo[3,4-c]pyrrole (FDPP) and its use in polymers has been reported.17-21 

Diketopyrrolopyrrole (DPP) is a strong electron-accepting moiety that can increase the 

intramolecular charge transfer along the polymer chain and stabilize the LUMO levels of the 

resulting materials.22-26 The DPP ring system also has a symmetric coplanar structure that 

enhances interactions, increasing charge carrier mobility.24, 27 Since the DPP moiety is a bis-

lactam, it is always synthesized between two arenes. Initially, 3,6-di(2-thienyl)-1,4-

diketopyrrolo[3,4-c]pyrrole (TDPP) was widely investigated for the synthesis of narrow 

band-gap polymers for use in OPVs with PCEs of up to 5.6%.22 Recently, FDPP-based 

polymers have been reported that exhibit better solubility than TDPP polymers. The resulting 

improvement in the film formation has lead to PCEs as high as 6.5%.19, 28 

At the same time, the electron-donating benzo[1,2-b:4,5-b′]dithiophene (BDT) moiety 

has been widely investigated for the synthesis of conjugated polymers. BDT has a planar 

conjugated structure that facilitates π−π stacking, leading to good charge carrier mobility.29-32 
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As a result, PCEs approaching 8% have been obtained for BDT copolymers.31, 33 Recently, 

our group34 and others15, 35-39 have investigated the use of the benzo[1,2-b:4,5-b’]difuran 

(BDF) as a building block for the synthesis of new conjugated polymers. In addition to the 

positive attributes of BDT, the smaller atomic radius of the oxygen relative to sulfur is 

expected to reduce steric hindrance between adjacent units, increasing planarity and 

conjugation.40 Consequently, BDF-containing conjugated polymers are expected to possess 

smaller band-gaps than their BDT-containing counterparts.  

Based on the aforementioned considerations, we have synthesized four new donor-

acceptor copolymers composed of BDF and either FDPP or TDPP. The FDPP monomer was 

chosen to compare with the TDPP due to its potential to enhance solubility. The alkyl side 

chains were varied to further evaluate the trade-off between improved solubility afforded by 

the branched 2-ethylhexyl chains and enhanced film forming properties of the linear 

tetradecyl chains. The performance of these materials was evaluated in OPVs to ascertain 

whether side-chain modification or heteroatom substitution had a greater impact on 

performance. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Synthesis and characterization  

The synthetic route to the copolymers is illustrated in Scheme 3.1. The Stille cross-

coupling reaction of benzodifuran 1 and the corresponding DPPs 2a-d afforded polymers P1-

P4 in good yields (52-84%) after purification by stirring with functionalized silica, followed 

by Soxhlet extraction. All of the polymers were soluble in common organic solvents, such as 

THF, chloroform and chlorobenzene at room temperature.  

 

 

Scheme 3.1. Synthesis of copolymers P1-P4. 
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The polymers were characterized by 1H NMR and the spectra are in agreement with the 

expected polymer structures (see Supporting Informaiton). The molecular weights were 

estimated using gel permeation chromatography (GPC) at 50 °C using THF as the eluent and 

the resulting data is summarized in Table 3.1. All polymers displayed strong intermolecular 

interactions in solution leading to aggregation at temperatures below 40 °C during analysis; 

thus, increasing the run temperatures allowed for the proper measurement of the molecular 

weight of individual polymer chains. The furan-containing polymers, P1 and P2, showed 

considerably higher molecular weights than their thiophene-containing analogues P3 and P4 

indicating that the furan-containing polymers have better solubility in THF. This is consistent 

with the results reported by Fréchet et al, where FDPP copolymers exhibited better solubility 

and higher molecular weight over those comprising TDPP.17 In our case, due to synthetic 

constraints, our two furan-containing copolymers have an equal number of thiophene and 

furan units. Of these, the polymer bearing branched 2-ethylhexyl side chains, P1, had a 

higher molecular weight than the one bearing linear tetradecyl side chains, P2. This trend 

was also observed in the set of polymers containing only thiophene in the polymer backbone, 

indicating that the improved solubility within each set is a result of the branched side chains. 

Interestingly, Fréchet and co-workers also observed that DPP-copolymers with both furan 

and thiophene in the polymer backbone had higher molecular weights than those containing 

only furan. This is increase in solubility was also seen in a series of oligomers containing 

both thiophene and furan.41, 42 Given the difficulty associated with synthesizing 

functionalized furans, increasing its content within the polymer backbone would be 

challenging. However, the previous reports suggest that such efforts may not improve the 

solubility of the resulting polymer.  

 

Table 3.1.  Molecular weight and thermal data for P1-P4. 
 

Polymer Yield (%)a Mw
b (kDa) Mn

b (kDa) PDI DPn Td
c (°C) 

P1 84 55.6 28.9 1.9 40 333 
P2 78 44.2 19.9 2.2 29 353 
P3 53 24.0 9.5 2.5 17 349 
P4 71 8.1 6.1 1.3 5 359 

a Isolated yield.  b Molecular weight data was obtained by GPC. c 5% 
weight loss determined by TGA in air. 
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3.3.2 Thermal properties 

The thermal properties of the polymers were evaluated using thermal gravimetric analysis 

(TGA) and differential scanning calorimetry (DSC). TGA results are summarized in Table 

3.1 and indicate that 5 % weight loss onsets occurred between 333-359 °C. DSC did not 

reveal any observable phase transitions for temperatures up to 200 °C; however, observable 

melting points were seen for all four polymers above 235 °C. These thermal characteristics 

are indicative of good stability above the operational temperature threshold of organic 

photovoltaic devices.   

3.3.3 Optical and electrochemical properties  

The normalized absorption spectra of P1-P4 in dilute CHCl3 solution and thin films are 

shown in Figures 3.1 and 3.2, respectively, and the optical data is summarized in Table 3.2. 

All four polymers exhibit two distinct absorption bands in both solution and film as is typical 

for such donor-acceptor copolymers.43 The high-energy band is attributable to localized π-π* 

transitions, while the broad, low-energy band corresponds to intermolecular charge transfer 

between the electron-donating and electron-accepting units.43 In solution, the λmax of both 

polymers P1 and P3 is nearly identical, at 658 nm and 657 nm, respectively. For P2 and P4, 

the λmax has a slight bathochromic shift, but both polymers exhibit a significant low-energy 

shoulder that their structural counterparts do not. 

 

Table 3.2.  Optical and electronic properties for P1-P4. 
 

Polymer     
     (nm)     

     (nm)      
a (eV) HOMOb (eV) LUMOb (eV)     

d (eV) 

P1 658 774, 668 1.4 -5.5 -3.7 1.8 
P2 663 739, 668 1.4 -5.5 -3.8 1.7 
P3 657 752, 673 1.3 -5.6 -3.8 1.8 
P4 671 678 1.4 -5.6 -3.7 1.9 

a Estimated from the absorption onset of the film. b HOMO= -(         + 5.1) eV. c LUMO = -
(           + 5.1) eV. d      = LUMO - HOMO. 

 

As thin films, all four polymers display an increase in the low energy vibrational 

components, resulting in a new max. Additionally, all four polymers have optical band-gaps 
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within 0.1 eV of each other, as estimated from the onset wavelength of the film absorption, 

indicating that effective conjugation was reached in each case. Despite this similarity, the 

polymers displayed moderate variations in the low energy absorption bands. The furan-

containing polymers, P1 and P2, have the most red-shifted absolute λmax at 744 nm and 739  

 

 

Fig. 3.1 UV-Vis absorption of P1-P4 in solution. 

 

 

Fig. 3.2 UV-Vis absorption of P1-P4 in film. 
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nm, respectively, whereas the thiophene-containing polymer P3 has only a local λmax in the 

same region at 752 nm and P4 only displays a weakly defined shoulder around 750 nm. This 

data suggests that the presence of this absorption band in P1 and P2 correlates well with the 

higher molecular weights, while its presence diminishes as the molecular weight declines in  

P3 and P4. The absorption properties are similar to those reported previously for 

PDPP4TBDT, a related terpolymer of the hexyldecyl, analogue of 2c, thiophene and 4,8-

di(5-ethylhexylthienyl) BDT which has a max =666 nm in solution and 722 nm in solid 

state.44 The BDF polymers also have slightly smaller optical band gaps than PDPP4TBDT 

(1.51 eV).44 This is likely due to the replacement of sulfur with oxygen, however since the 

position of the thiophene substituents in PDPP4TBDT is different, we cannot completely 

rule out other factors.  

To evaluate the electrochemical properties of the polymers, the redox behaviour was 

measured by cyclic voltammetry. All four polymers exhibit measureable and reproducible 

oxidation and reduction processes. The HOMO and LUMO levels were estimated from the 

onset of oxidation and reduction using the absolute energy level of ferrocene/ferrocenium 

(Fc/Fc+) as 5.1 eV under vacuum and are summarized in Table 3.2.45 For all four polymers, 

the HOMO levels ranged between -5.5 to -5.6 eV, deep enough to guarantee good air 

stability. The LUMO levels ranged from -3.7 to -3.8 eV giving an average electrochemical 

band-gap of 1.8 ± 0.1eV. These values are statistically similar enough to suggest that 

replacing the furans flanking the DPP monomer with thiophenes has only a negligible 

influence on the electrochemical properties. However, replacing the sulfur atoms of BDT 

with oxygen has a slight impact on the electronic properties as the LUMO values of P3 and 

P4 are similar to those reported previously for PDPP4TBDT and the HOMO levels for P3 

and P4 are stabilized by ~0.1 eV relative to PDPP4TBDT.44 It is also of note that the optical 

band-gaps are all estimated to be slightly smaller than the electrochemical band-gap, which 

correlates well to the expected energy barrier associated with the interface of the polymer 

film and the electrode surface.45  

3.3.4  Photovoltaic devices 

The performance of all four polymers in OPVs was evaluated using [6,6]-phenyl-C71-

butyric acid methyl ester (PC71BM) as the electron acceptor with a device configuration of 
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indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): polystyrene sulfonate 

(PEDOT:PSS)/polymer:PC71BM(1:2, w/w)/LiF/Al. The active layer was deposited from 30 

mg/mL o-DCB solutions, using processing conditions selected to yield a thickness of about 

100 nm. In some cases, analogous devices were prepared using 3% of 1-chloronapthalene 

(CN) as a high-boiling solvent additive to improve polymer/PCBM blend morphology. The 

current density-voltage (J-V) curves of the OPVs are shown in Figure 3.2. The resultant 

photovoltaic performance, including short circuit current density (JSC), open circuit voltage 

(VOC), fill factor (FF) and power conversion efficiency (PCE) are shown in Table 3.3.  

 

Table 3.3.  Photovoltaic device performance of P1-P4 with PCBM. 
 

Polymer Additive JSC (mA/cm2) VOC (V) FF  PCE (%) 
P1 none -5.1 0.70 0.63 2.28 

 3% CN -7.0 0.69 0.60 2.89 
P2 none -7.0 0.66 0.60 2.77 

 3% CN -7.7 0.65 0.57 2.81 
P3 none -6.7 0.67 0.47 2.10 

 3% CN -7.4 0.66 0.47 2.28 
P4 none -4.2 0.59 0.39 0.97 

 

 

 

Fig. 3.3 Current-voltage characteristics for P1-P4-based OPVs without solvent additives 
(Left), and for P1-P3-based OPVs using 3% CN as a solvent additive (Right). 

 
Among the devices fabricated without solvent additive, P2 gave the highest PCE, at 

2.77%. Conversely, the P1- and P3-based devices had somewhat lower efficiencies with 
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respective values of 2.28% and 2.10%. While all three of these polymers gave open circuit 

voltages of ~0.70 V, P2 combines superior photocurrent with a good fill factor. This is a 

result of the polymer’s good molecular weights and the presence of linear alkyl chains, which 

typically results in ideal blends without the addition of additives. Expectantly, the devices 

fabricated from P4 performed significantly worse, only returning PCEs of ~1.0 %, a result of 

decreases in all categories. This outcome is a consequence of the poor solubility and 

significantly lower molecular weights of P4, both of which negatively affect film formation.  

We initially evaluated the use of diiodooctane as a solvent additive,46 but saw no 

improvement in the PCE for any of the polymers. However, when chloronaphthalene (CN) 

was used as a solvent additive,47 the device performance improved in all cases. The most 

notable increase was observed in the P1-based devices, where the PCE improved to 2.89%, 

largely due to an increase in the photocurrent. While both the P2- and P3-based devices also 

saw an increase in photocurrent, this improvement was less than in the case of P1. 

Accordingly, the P2- and P3-based devices had much smaller gains in overall PCE. 

When comparing devices based on the furan-containing polymers P1 and P2, both with 

identical polymer backbones, the impact that solvent additives can have on blend 

morphology is made clear. With the 3% CN additive, the devices from P2 experienced a 

negligible improvement in PCE (+0.04%); however, P1-based devices consistently gave 

better efficiencies with the CN additive. Thus, solvent additives have the potential to 

neutralize morphological defects resulting from the use of branched side chains. Arguably, 

this effect is not as pronounced in the devices based on P3 where reduced molecular weights 

lead to poorer film morphologies that could not be overcome. Due to these deficiencies, no 

attempts were made to optimize P4’s devices through solvent additives. 

To further evaluate the photovoltaic performance of the polymers we investigated the 

hole mobility of the polymers using the space-charge-limited current (SCLC) method with a 

hole only device structure of ITO/PEDOT:PSS/Polymer/MoO3/Al.48 The mobilites were 

calculated according to the equation 3.1: 

JSCL =         
 

   
 

(3.1) 

where ε0εr is the permittivity of the polymer, μ is the carrier mobility, and L is the device 

thickness.49 The hole mobilities were 1.18 x 10-3 cm2V-1s-1, 6.69 x 10-4 cm2V-1s-1, 5.58 x 10-4 
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cm2V-1s-, and 6.30 x 10-4 cm2V-1s-1 for P1, P2, P3 and P4, respectively. These values 

correlate with the device performance in that P1 had the highest mobility and also the highest 

PCE. However, P4 gave the poorest performance, but has a comparable hole mobility to P2 

and P3. Thus, the difference in device performance is also a result of the film morphology. 

 
 

Fig. 3.4 AFM images (5 μm ×5 μm) of P1 (top), P2 (middle) and P3 (bottom) with (right) 
and without (left) CN additive. 

 
We examined the morphology of the polymer/PC71BM blends using atomic force 

microscopy (AFM). The height images of the polymer blends both with and without CN 

additive are shown in Figure 3.4. Although there are slight variations in the OPV 

performance of the different blends, they all formed fairly smooth films with small root- 

mean-square (rms) roughness of 1.05, 2.3, and 0.97 nm, for the P1, P2 and P3 respectively. 
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The AFM height images revealed that the surface topography of Polymer/PC71BM blend 

films with 3% CN additive is different from the films without the additive. In particular, the 

surface roughness of P1 based active layer was decreased from 2.3 nm to 1.47 nm when the 

CN was added. This change was favorable for charge separation and transport as the PCE 

increased from 2.28% to 2.89%.50 However, surface roughness is not the only indication of 

improvement as the surface roughness of P2 and P3 based active layer was increased from 

1.05 nm to 3.91 nm and from 0.97 nm to 2.1 nm respectively when the CN was added. It has 

been reported previously that a rougher surface may also lead to a better photovoltaic 

performance.51 Overall, the CN additive seemed to reduce the voids in the resulting films, 

improving the chemical compatibility between polymer donor and PC71BM acceptor 

molecules, thereby resulting in enhanced PCEs in P1-P3 based devices. Since all four 

polymers show similar optical and electronic properties, factors related to morphology and 

charge carrier mobility play a larger role in overall device performance.  

 

3.4 CONCLUSIONS 

A related series of new donor-acceptor copolymers based on diketopyrrolopyrrole and 

2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b’]difuran have been synthesized. The substitution of 

the DPP monomer has been modified to bear all possible combinations of either flanking 

thiophenes or furans, and branched 2-ethylhexyl or linear tetradecyl alkyl chains. All four 

polymers displayed similar optoelectronic properties with an estimated average HOMOs of -

5.6 eV, LUMOs of -3.8 eV and optical band-gaps of around 1.4 eV. Despite these 

similarities, the polymers displayed varied molecular weights due to the aforementioned 

modifications to the DPP unit. The furan-containing polymers P1 and P2 achieved higher 

molecular weights than either of the thiophene-containing analogues. Although branched side 

chains afforded greater solubility than the linear side chains, the OPVs fabricated from P2, 

which bears linear side chains exhibited the best PCE (~3%). Devices from P1 were only 

able to achieve comparable efficiencies to the P2 devices through the use of solvent 

additives. However, devices based on P3 and P4 achieved maximum efficiencies of only 

~2.3% and 1.0%, respectively, due to limited solubility and poor film formation. These 

results further demonstrate that incorporating furan into polymer backbones typically 

dominated by thiophene can vastly improve solubility; as a result polymers with higher 
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molecular weights can be processed without the use of large, branched alkyl side chains. 

These fundamental improvements are integral to the creation of new, high-efficiency OPVs 

by enhancing both film morphology and charge-carrier mobility. 

 

3.5 EXPERIMENTAL 

3.5.1 Materials 

Air- and moisture-sensitive reactions were performed using standard Schlenk techniques. 

Solvents used for palladium-catalyzed reactions were deoxygenated prior to use by sparging 

with argon through the solvent with vigorous stirring for 30-60 minutes. SiliaMetS® 

Cysteine was purchased from SiliCycle, Inc. All other chemical reagents were purchased 

from commercial sources and used without further purification unless otherwise noted. (5,5'-

(3,7-Didecylbenzo[1,2-b:4,5-b']difuran-2,6-diyl)bis(4-decylthiophene-5,2-diyl))bis(tri-

methylstannane) 1 was prepared according to literature procedures. For synthesis of 3,6-

bis(5-bromofuran-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 2a, 3,6-

bis(5-bromofuran-2-yl)-2,5-bis(tetradecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 2b, 3,6-

di(5-bromo-2-thienyl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 2c, and 

bis(5-bromothiophen-2-yl)-2,5-bis(tetradecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 2d, 

see Supporting Information.  

3.5.2 Characterization 

Nuclear magnetic resonance (NMR) spectra were carried out in CDCl3 and recorded on 

Varian VXR (300 MHz), Varian MR (400 MHz) or a Bruker Avance III (600 MHz). 1H 

NMR spectra were internally referenced to the residual protonated solvent peak. In all 

spectra, chemical shifts are given in ppm (δ) relative to the solvent. Gel permeation 

chromatography (GPC) measurements were performed on a separation module equipped with 

three 5 μm I-gel columns connected in series (guard, HMW, MMW and LMW) with a UV-

Vis detector. Analyses were performed at 50 °C using THF as the eluent with a flow rate of 

1.0 mL/min. Calibration was based on polystyrene standards. Thermal gravimetric analysis 

measurements were performed over an interval of 30 - 850 °C at a heating rate of 20 °C/min 

under ambient atmosphere. Differential scanning calorimetry was performed using a first 

scan heating rate of 15 °C/min to erase thermal history and a second scan to measure 
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transitions between 0 - 330 °C under nitrogen. Transitions were also measured with cooling 

at 15 °C/min.  Cyclic voltammetry was performed using a e-DAQ e-corder 410 potentiostat 

with a scanning rate of 100 mV/s. The polymer solutions (1-2 mg/mL) were drop-cast on a 

platinum electrode. Ag/Ag+ was used as the reference electrode and a platinum wire as the 

auxiliary electrode.  The reported values are referenced to Fc/Fc+ (-5.1 eV versus vacuum).  

All electrochemistry experiments were performed in deoxygenated CH3CN under an argon 

atmosphere using 0.1 M tetrabutylammonium hexafluorophosphate as the electrolyte. 

Absorption spectra were obtained on a photodiode-array Agilent 8453 UV-visible 

spectrophotometer using polymer solutions in CHCl3 and thin films. The films were made by 

spin-coating 25 x 25 x 1 mm glass slides using solutions of polymer (2.5-5.0 mg/mL) in 

CHCl3/o-dichlorobenzene at a spin rate of 1200 rpm on a Headway Research, Inc. PWM32 

spin-coater.  

3.5.3 Fabrication of photovoltaic devices 

All devices were produced via a solution-based, spin-casting fabrication process. All 

polymers were mixed with PC71BM (SES Research) (mixed 1:2 with a total solution 

concentration of 30 mg/mL for PC71BM) then dissolved in o-dichlorobenzene and stirred at 

95°C for 48 hours. ITO coated glass slides (Delta Technologies) were cleaned by consecutive 

10 minute sonications in (i) MucasolTM detergent (dissolved in deionized water), 2x, (ii) 

deionized water, (iii) acetone, and then (iv) isopropanol. The slides were then dried in an 

oven for at least 3 hours and cleaned with air plasma (Harrick Scientific plasma cleaner) for 

10 minutes. Filtered (0.45m) PEDOT:PSS (Clevios PTM) was spin-coated onto the prepared 

substrates (2000 rpm/60 sec) after first  being stirred for 10 minutes at room temperature. The 

PEDOT:PSS films were annealed at 150 °C for 30 minutes. After cooling, the substrates 

were transferred to an argon-filled glovebox.  After 48 hours of mixing, the polymer:PCBM 

solutions were filtered (0.45 m pore, GS-Tek) and simultaneously dropped onto the 

PEDOT:PSS-coated substrates and spin-cast at 1000 rpm for 120 seconds. The films were 

dried under vacuum overnight.  LiF (1 nm) and Al (100 nm) were successively thermally 

evaporated through a shadow mask under vacuum to complete the devices. J-V data was 

generated by illuminating the devices using an ETH quartzline lamp at 1 sun (calibrated 

using a crystalline silicon photodiode with a KG-5 filter). 
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3.5.4 Synthesis 

General procedure for the synthesis of copolymers. An oven-dried, 25 mL Schlenk 

flask was charged with dry, deoxygenated toluene (5-10 mL), benzodifuran 1 (1.0 equiv.), 

and diketopyrrolopyrole 2a-d (1.05 equiv.). The stirred solution was sparged with argon for 

10 minutes and followed by the addition of tris(dibenzylideneacetone)dipalladium(0) (2 

mol%) and tri(o-tolyl)phosphine (8 mol %). The reaction mixture was heated to reflux and 

stirred, under argon, for 4-24 hours. The polymer was end-capped by the addition of an 

excess amount of trimethyl(phenyl)tin and iodobenzene, each followed by a 4 hour period of 

reflux. The reaction mixture was cooled to 50 °C and diluted with chloroform.  A small 

portion of SiliaMetS® Cysteine was added and the reaction mixture was stirred for 8 hours 

followed by precipitation into cold methanol and filtration. The polymer was purified via 

Soxhlet extraction by subsequently rinsing with methanol, acetone and hexanes and finally 

extracted with chloroform. Most of the chloroform was removed in vacuo and the polymer 

was precipitated into methanol, collected by filtration and dried in vacuo. 

 

 Synthesis of P1. Following the general polymerization procedure using compounds 1 (605 

mg, 0.50 mmol) and 2a (342 mg, 0.53 mmol) and a reaction time of 6 hours afforded a dark 

solid (578 mg, 84%). 1H NMR (600 MHz, CDCl3): δ 8.51 (2H, br), 7.57 (2H, br), 7.34 (2H, 

br), 6.85 (2H, br), 4.19 (4H, br), 2.79-2.96 (8H, br), 1.99 (2H, br), 1.68-1.81 (8H, br), 1.22-

1.52 (72H, br), 0.82-0.96 (24H, br). GPC (THF, 50 °C): Mw = 55.6 kDa, Mn = 28.9 kDa, PDI 

= 1.9.  

 

 Synthesis of P2. Following the general polymerization procedure using compounds 1 (363 

mg, 0.3 mmol) and 2b (258 mg, 0.32mmol) and a reaction time of 6 hours afforded a dark 

solid (360 mg, 78%). 1H NMR (600 MHz, CDCl3): δ 8.47 (2H, br), 7.55 (2H, br), 7.34 (2H, 

br), 6.86 (2H, br), 4.24 (4H, br), 2.79-2.96 (8H, br), 1.68-1.88 (12H, br), 1.20-1.55 (100H, 

br), 0.87 (18H, br). GPC (THF, 50 °C): Mw = 44.2 kDa, Mn = 19.9 kDa, PDI = 2.2.  

 

 Synthesis of P3. Following the general polymerization procedure using compounds 1 (346 

mg, 0.29 mmol) and 2c (203 mg, 0.32 mmol) and a reaction time of 4 hours afforded a dark 

solid (220 mg, 52%). 1H NMR (600 MHz, CDCl3): δ 8.91 (2H, br), 7.56 (2H, br), 7.36 (2H, 
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br), 7.25 (2H, br), 4.09 (4H, br), 2.79-2.96 (8H, br), 1.98 (2H, br), 1.68-1.81 (8H, br), 1.22-

1.48 (72H, br), 0.96 (6H, br), 0.88 (18H, br). GPC (THF, 50 °C): Mw = 24.0 kDa, Mn = 9.5 

kDa, PDI = 2.5.  

 

 Synthesis of P4. Following the general polymerization procedure using compounds 1 (209 

mg, 0.17 mmol) and 2d (154 mg, 0.18 mmol) and a reaction time of 24 hours afforded a dark 

solid (201 mg, 71%). 1H NMR (600 MHz, CDCl3): δ 8.91 (2H, br), 7.56 (2H, br), 7.36 (2H, 

br), 7.26 (2H, br), 4.14 (4H, br), 2.78-2.95 (8H, br), 1.68-1.88 (12H, br), 1.22-1.52 (100H, 

br), 0.88 (18H, br). GPC (THF, 50 °C): Mw = 8.1 kDa, Mn = 6.1 kDa, PDI = 1.3.  
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3.7 SUPPORTING INFORMATION 

3.7.1 Synthetic Procedures 
 

Scheme S3.1. Synthesis of diketopyrrolopyrole monomers. 
 
3,6-Di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (S1).  Sodium metal (4.94 g, 

218 mmol) was added portion-wise to tert-amyl alcohol and the solution was stirred 

overnight at 120°C. Furan-2-carbonitrile (20.0 g, 269 mmol) was then added to the hot 

alkoxide solution followed by the dropwise addition of a solution of dimethyl succinate (11.7 

mL, 89 mmol) in 80 mL of tert-amyl alcohol. After complete addition of the dimethyl 

succinate solution, the mixture was allowed to stir at reflux overnight. The reaction mixture 

was then allowed to cool to 60°C, quenched with 40 mL of acetic acid, and allowed to stir at 

reflux for an additional hour. The resulting suspension was then filtered and the solid washed 

with hot methanol and water three times and dried in vacuo, affording a dark solid (21.8 g, 

91%). Compound S1 was used in the next step without further purification. 

 

3,6-Di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (S2).  The title compound 

was prepared in a similar manner to S1 using sodium metal (3.85 g, 173 mmol), thiophene-2-

carbonitrile (19.0 mL, 204 mmol) and dimethyl succinate (54 mmol, 0.67 M in tert-amyl 

alcohol) to afford a dark solid (15.1 g, 93%). Compound S2 was used in the next step without 

further purification. 

 

General alkylation procedure of DPP cores. The DPP core S1 or S2, K2CO3 (4.3 equiv), 

and catalytic 18-crown-6 were dissolved in DMF under argon and stirred at 130°C for 1h. 

Alkyl bromide (3.7 equiv) was then added dropwise and the reaction mixture was stirred for 

48h. The reaction mixture was then cooled to room temperature and dilute with water. 

Chloroform was added to the mixture and the layers were separated. The aqueous layer was 
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extracted with chloroform. The combined organic layers were washed with water, dried over 

sodium sulfate and the solvent removed in vacuo. The crude product was purified by flash 

chromatography on silica, using either chloroform or 1:1 chloroform/hexanes as the eluent to 

give pure alkylated product. 

 

2,5-bis(2-ethylhexyl)-3,6-di(2-furanyl)-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (S3a). 

The title compound was synthesized according to the general alkylation procedure for DPP 

cores from 2.50 g (9.3 mmol) S1 and 2-ethylhexyl bromide and purified by flash 

chromatography on silica using as the 1:1 chloroform/hexanes as the eluent to afford 2.75 g 

(5.6 mmol) of a tacky red solid in 60% yield. 1H NMR (400 MHz, CDCl3) δ 8.33 (dd, J = 

3.6, 0.7 Hz, 2H), 7.61 (dd, J = 1.7, 0.7 Hz, 2H), 6.69 (dd, J = 3.7, 1.7 Hz, 2H), 4.04 (dd, J = 

7.4, 1.1 Hz, 4H), 1.83 – 1.67 (m, 2H), 1.42 – 1.19 (m, 16H), 0.98 – 0.78 (m, 6H). 

 

3,6-di(2-furanyl)--2,5-ditetradecylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (S3b). The 

title compound was synthesized according to the general alkylation procedure for DPP cores 

from 3.42 g (13.2 mmol) S1 and 1-bromotetradecane and purified by flash chromatography 

on silica using as the 1:1 chloroform/hexanes as the eluent to afford 3.75 g (5.7 mmol) of a 

tacky red solid in 43% yield. 1H NMR (600 MHz, CDCl3) δ 8.31 (dd, J = 3.7, 0.7 Hz, 2H), 

7.63 (dd, J = 1.7, 0.7 Hz, 2H), 6.70 (dd, J = 3.7, 1.7 Hz, 2H), 4.13 – 4.08 (m, 4H), 1.83 – 

1.58 (m, 4H), 1.43 – 1.18 (m, 44H), 0.88 (t, J = 7.1 Hz, 6H). 

 

2,5-Bis(2-ethylhexyl)-3,6-di(2-thienyl)-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (S3c). 

The title compound was synthesized according to the general alkylation procedure for DPP 

cores from 3.00 g (10.0 mmol) S2 and 2-ethylhexyl bromide and purified by flash 

chromatography on silica using chloroform as the eluent to afford 2.29 g (4.3 mmol) of a 

tacky purple solid in 43% yield. 1H NMR (600 MHz, CDCl3) δ 8.89 (dd, J = 3.9, 1.2 Hz, 

2H), 7.61 (dd, J = 5.0, 1.1 Hz, 2H), 7.25 – 7.23 (m, 2H), 4.04 (m, 4H), 1.83 – 1.67 (m, 2H), 

1.42 – 1.19 (m, 16H), 0.98 – 0.83 (m, 6H). 

 

2,5-Ditetradecyl-3,6-di(2-thienyl)-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (S3d). The 

title compound was synthesized according to the general alkylation procedure for DPP cores 
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from 0.30 g (1.0 mmol) S2 and 1-bromotetradecane and purified by flash chromatography on 

silica using chloroform as the eluent to afford 0.18 g (0.26 mmol) of a tacky purple solid in 

26% yield. 1H NMR (600 MHz, CDCl3) δ 8.89 (dd, J = 3.9, 1.2 Hz, 2H), 7.61 (dd, J = 5.0, 

1.1 Hz, 2H), 7.25 – 7.23 (m, 2H), 4.13 – 4.08 (m, 4H), 1.83 – 1.58 (m, 4H), 1.43 – 1.18 (m, 

44H), 0.88 (t, J = 7.1 Hz, 6H). 

 

General bromination procedure of DPP cores. Alkylated-DPP was dissolved in 

chloroform, placed under an argon atmosphere and protected from light. The reaction 

mixture was then cooled to 0°C and NBS (2.4 equiv) was added portion-wise over 5 minutes. 

The reaction mixture was warmed to room temperature and stirred for 48h before being 

quenched with methanol. The solution was then washed with water and the organic layer was 

dried with sodium sulfate before being concentrated in vacuo. The crude product was then 

purified by flash chromatography on silica, using chloroform as eluent to give pure product. 

 

3,6-Bis(5-bromofuran-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 

(2a).  The title compound was synthesized according to the general bromination procedure of 

DPP cores from 1.66 g (1.66 g, 3.4 mmol) S3a to afford 1.31 g (1.8 mmol) of a dark red solid 

in 60% yield, (400 MHz, CDCl3) δ 8.30 (d, J = 3.7 Hz, 2H), 6.62 (d, J = 3.7 Hz, 2H), 3.99 

(dd, J = 7.4, 2.7 Hz, 4H), 1.77 – 1.68 (m, 2H), 1.42 – 1.20 (m, 16H), 0.96 – 0.83 (m, 12H). 

 

3,6-Bis(5-bromofuran-2-yl)-2,5-ditetradecylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 

(2b). The title compound was synthesized according to the general bromination procedure of 

DPP cores from 1.50 g (2.28 mmol) S3a to afford 0.80 g (1.0 mmol) of a dark red solid in 

40% yield, 1H NMR (600 MHz, CDCl3) δ 8.25 (d, J = 3.7 Hz, 2H), 6.63 (d, J = 3.7 

 

 3,6-Bis(5-bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-

dione (2c). The title compound was synthesized according to the general bromination 

procedure of DPP cores from 824 mg (1.6 mmol) S3a to afford 203 mg (0.3 mmol) of a dark 

purple solid in 19% yield, 1H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 4.2 Hz, 2H), 7.16 (d, J 

= 4.2 Hz, 2H), 3.92 – 3.78 (m, 4H), 1.83 – 1.71 (m, 2H), 1.37 – 1.02 (m, 16H), 0.92 – 0.72 

(m, 12H). 
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3,6-Bis(5-bromothiophen-2-yl)-2,5-ditetradecylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 

(2d). The title compound was synthesized according to the general bromination procedure of 

DPP cores from 536 mg (0.8 mmol) S3a to afford 154 mg (0.2 mmol) of a dark purple solid 

in 25% yield, 1H NMR (300 MHz, CDCl3) δ 8.68 (d, J = 4.2 Hz, 2H), 7.24 (d, J = 4.2 Hz, 

2H), 4.12 – 3.80 (m, 4H), 1.85 – 1.60 (m, 4H), 1.41 – 1.04 (m, 44H), 0.88 (t, J = 6.4 Hz, 6H). 
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3.7.2  Spectral and Analytic Data 

 

 
Figure S3.1. 1H NMR of P1. 
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Figure S3.2. 1H NMR of P2. 
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Figure S3.3. 1H NMR of P3. 
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Figure S3.4. 1H NMR of P4. 
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Figure S3.5.  Thermal Gravometric Analysis of P1-P4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

128 

 
 
 
 
 
 

 
Figure S3.6.  Differential scanning calorimetery (DSC) plots of P1-P4. 
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Figure S3.7.  Cyclic voltammetry traces for oxidation cycles of P1-P4. 
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Figure S3.8.  Cyclic voltammetry traces for reduction cycles of P1-P4. 
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Figure S3.9.  Current-voltage characteristics for polymer OPVs of P1 (black), P2 (blue), and 
P3 (red) processed with and without 3% chloronapthalene. 
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CHAPTER 4 

 

Atomic Level Engineering: Comparing the effect heteroatoms in analogous benzo[1,2-
b:4,5-b’]dichalcogenophenes on photovoltaic device performance in donor-acceptor 
copolymers with diketopyrrolopyrrole. 
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4.1 ABSTRACT 

An analogous series of donor–acceptor conjugated polymers based on the novel 3,7-

didodecyl-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']dichalcogenophene (BDC) donors, and 

1,4-diketopyrrolo[3,4-c]pyrrole as the acceptor were synthesized via the Stille cross-coupling 

reaction. The BDC heteroatoms were varied between oxygen, sulfur, and selenium to 

evaluate the impact on optoelectronic properties and performance in organic photovoltaic 

cells (OPVs). The benzodifuran-based copolymer displayed a HOMO level ~0.1 eV higher as 

well as a narrower optical band gap of 1.40 eV as compared with its chalcogen-based 
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analogues.  This resulted in superior absorbance of the solar spectrum and the best overall 

performance of 2.9 % when the polymers were used as donor materials along with PC71BM 

as the electron-acceptor in bulk-heterojunction photovoltaic cells.  The sulfur and selenium-

based analogues performed similarly with power conversion efficiencies 50 % lower than the 

BDF analogues. These polymers suffered from poor fill factors and low short circuit current 

density, despite exhibiting open circuit voltages ~0.2 eV higher as compared with the BDF-

based devices. 

4.2 INTRODUCTION 

Significant strides have been made recently towards the realization of organic 

semiconductor technology in everyday applications.  In the last decade alone, extensive 

research has been conducted to make use of conjugated polymers as components for field 

effect transistors (OFET)s, light-emitting diodes (OLED)s, and photovoltaic cells (OPV)s.1, 2 

These organic-based materials offer several advantages that their inorganic counterparts lack, 

including the ability to be solution processed into large-area thin-films and to be fabricated 

into lightweight, flexible devices as well as the capacity to have their properties tuned 

through synthesis.3-6 One of the most successful methods of modifying the optical and 

electronic properties of conjugated polymers is to synthesize materials comprised of 

alternating electron-donating and electron-accepting moieties.7, 8 Through careful design and 

construction at the molecular level, one can control a multitude of these materials’ properties 

that impact the performance of bulk-heterojunction organic photovoltaic cells (OPVs).  This 

includes appropriately adjusted HOMO and LUMO energy levels, a reasonably narrow band 

gap, high charge carrier mobilities, and optimal active layer morphologies.  

The constant evolution of new conjugated organic materials has played a large role in the 

steady rise in OPV performance over the last decade. One of the most prevalent themes to 

molecular design is the use of the thiophene moiety as a building block for organic 

electronics.  From the often-studied poly(3-hexylthiophene) (P3HT) to a variety of more 

functionally complex electron-donating and electron-accepting heterocycles, thiophenes offer 

superior electronic properties, including high field-effect mobilities.9, 10 The steady increase 

in the performance of OPVs over the past few years is a combination of many improvements 

including the development of new device architectures, band-gap engineering of the donor 
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materials, and optimization of film morphology. Recently, there has been interest in the 

substitution of other group 16 heteroatoms such oxygen or selenium to give isoelectronic 

furanyl and selenophenyl analogues to thiophene-based molecules.  

Until recently, furan has not been widely incorporated into conjugated polymers, 

primarily due to difficulties associated with the synthesis of substituted furans. Nevertheless, 

furan possesses some advantageous properties that make it a potential candidate as a 

thiophene substitute.  First of all, furan is less aromatic than thiophene and should lead to a 

more stabilized quinoid form, resulting in narrower band gaps.11 Additionally, as oxygen has 

a diatomic radius only about 60% as large as sulfur, oligomers of furan experience a 

significantly more planar arrangment compared to those of thiophene due to less steric 

interactions with adjacent units.12 There has also been evidence that polymers not based 

solely on furan, but instead with partial furan content, have better solubility than their 

thiophene containing analogs and as a result, yield OPVs with enhanced PCEs.13, 14  

On the other hand, selenium is also expected to have some advantages over sulfur that 

can lead to beneficial properties in the subsequent materials. Selenophene, like furan, is also 

expected to favor the quinoid form as it is less aromatic than thiophene.15, 16 Again, this 

results in a more planar, narrower band gap polymer.17-19 Selenium-based molecules should 

exhibit increased charge-carrier mobility, since they have lone-pairs of electrons that have a 

reduced contribution to the conjugated backbone.20 In terms of energy levels, selenium has 

an electronegativity nearly identical to that of sulfur and should result in similar highest-

occupied molecular orbital (HOMO) levels.21  Conversely, selenium has a stabilizing effect 

on the lowest-unoccupied molecular orbital (LUMO) owing to delocalization of the LUMO 

over the selenium atom, and reduced ionization potentials.22 Thus, selenium is expected to 

promote broader solar spectrum absorbance without raising the HOMO level and forfeiting 

valuable open-circuit voltage (Voc) in OPVs.  

Among electron-donating materials, benzo[1,2-b:4,5-b′]dithiophene (BDT) has seen 

widespread use as a component in many OPVs with power conversion efficiencies (PCE)s 

for polymer OPVs over 7% for standard architectures and exceeding 9% in inverted solar 

cells. 23-26 BDT owes this success to its planar structure which leads to high hole mobilities 

and also facilitates favorable cofacial interactions through π-π stacking.27-30 Despite this, the 

exploration of the analogous BDCs is relatively unexplored, with only a handful of examples 



www.manaraa.com

137 

of benzo[1,2-b:4,5-b′]difuran (BDF) reported by our group31, 32 and others,11, 33-36 and only 

one report of benzo[1,2-b:4,5-b′]diselenophene (BDSe), by Yu et al.,37 using these molecules 

as electron-donors in D-A copolymers for OPVs.  In these cases, oxygen and selenium 

substitution has resulted in PCEs approaching 5% and 7%, respectively.  

Recently, we reported the synthesis of the BDF-based monomer, 3,7-diiodo-2,6-

di(thiophen-2-yl)benzo[1,2-b:4,5-b']difuran, its alkylation, and its subsequent use in D-A 

copolymers with the electron-accepting monomer 3,6-di(2-furanyl)-1,4-diketopyrrolo[3,4-

c]pyrrole (FDPP).14, 38-41 Diketopyrrolopyrrole (DPP) is a strong electron-accepting moiety 

that is known to promote intramolecular charge transfer within the polymer backbone as well 

as result in materials with low lying LUMO levels.42-46 The DPP moiety can experience 

enhanced interchain interactions due to its symmetric coplanar structure.44, 47 Initially, 3,6-

di(2-thienyl)-1,4-diketopyrrolo[3,4-c]pyrrole (TDPP) was widely investigated for the 

synthesis of narrow band-gap polymers for use in OPVs with PCEs of up to 5.6%. 

Previously, FDPP-based polymers have been reported to exhibit better solubility than the 

analogous thiophene-flanked DPP-based polymers. Enhanced solubility plays an essential 

role in the improved PCEs realized by these copolymers, resulting from superior film 

formation.39, 42, 48 

One of the problems associated with drawing conclusions between our previously 

synthesized BDF-based polymers and other similar BDT systems is the differing side chain 

substitution patterns of our version, which has 3,7-substitution, and the more common 4,8-

substituted BDT. These variances can cause measurable differences in the electronic and 

physical properties of the resulting polymers. Taking these considerations in account, we 

have synthesized two new monomers with analogous structures to our previously reported 

BDF monomer comprised of BDT or BDSe. D-A copolymers composed of either BDT or 

BDSe and FDPP were synthesized and used in organic solar cell devices. Likewise, we have 

included a BDF analogue with more comparable molecular weights as well as the previously 

studied polymer to draw direct comparisons. The FDPP monomer was chosen as it gave the 

best performance in OPVs in our previous report. The performance of these materials was 

evaluated in OPVs to further evaluate the influence of how heteroatom substitution between 

the chalcogens can impact device performance. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Synthesis and characterization  

The synthetic route to the sulfur- and selenium-based benzo[1,2-b:4,5-b’]dichalcogen-

ophene monomers is illustrated in Scheme 4.1. Compounds 1a and 1b were synthesized from 

1,4-dibromobenzene according to literature procedures, the deprotection of which afforded 

compounds 2a and 2b.49-51 3-Decyl-2-iodothiophene was synthesized according to a 

literature procedure by the iodination of 3-decylthiophene with N-iodosuccinimide.52 

Compounds 3a and 3b were prepared by the Sonogashira cross-coupling reaction of 3-decyl-

2-iodothiophene and the respective bisacetylene 2a or 2b.  The iodine-induced double 

cyclization of 3a and 3b gave BDT 4a and BDSe 4b in excellent yields. One benefit to this 

cyclization is that it results in two aryliodides, which were then subjected to Sonogashira 

cross-coupling conditions with 1-decyne to attach additional side chains for increased 

solubility, yielding compounds 5a and 5b. 

Some difficulty was encountered in the attempt to hydrogenate the alkynes to the 

completely saturated decyl chains. Compound 5a was subjected the standard conditions 

(Method A) that our group reported previously for the analogous BDF compound: 10% Pd/C 

at 35 bar in a Parr apparatus.  However, the reaction failed to go to completion in a similar 

time frame (~2 days).  Increased pressure of up to ~75 bar did not yield any significant 

increase in hydrogenated compound 5a.  Instead, it was necessary to load additional portions 

of catalyst and an extended reaction time of almost 3 weeks to give a ~95% hydrogenated 

product.  Attempts to hydrogenated BDSe 5b were even more sluggish and lesser amounts of 

partially and completely hydrogenated product were observed for similar reaction times to 

BDT 5a.  It seems likely that these reduced reactions were the result of catalyst poisoning 

from the sulfur- and selenium-containing aromatic rings.   

 Fortunately, we were able to successfully carry out the hydrogenation using a 

ThalesNano H-Cube ProTM.  The advantage of using this system was twofold: firstly, by 

passing a solution of either 5a or 5b through the Pd/C cartridge mitigated any sulfur or 

selenium coordination to the catalyst; secondly, any partially or unhydrogenated compound 

present in the crude product mixture after one cycle could be completely hydrogenated in 
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additional cycles through the system.  Several runs through the H-cube at 125° C and 100 bar 

afforded compounds 6a and 6b in good yield. These were then converted to bisstannane 

monomers 7a and 7b, respectively, by lithiation with n-butyllithium followed by the addition 

of trimethyltinchloride. 

 

 

Scheme 4.1. Synthetic route to BDC monomers. 

 
The synthesis of the donor-acceptor copolymers is shown in Scheme 4.2.  Benzodifuran 8  

was synthesized previously by our group.31 The Stille cross-coupling reaction of diketo-

pyrrolpyrole 9 and corresponding bisstannane 7a, 7b, or 8 afforded polymers PBDT-DPP, 

PBDSe-DPP and PBDF-DPP in good yields (70% - 80%) after purification by stirring with 

functionalized silica followed by Soxhlet extraction. The analogous furan-containing 

polymer PBDF-DPP was previously reported by our group (as P1), but was remade at a 
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molecular weight similar to that of PBDT-DPP and PBDSe-DPP for comparison in this 

report.32  All of the polymers were soluble in common organic solvents, such as THF, 

chloroform and chlorobenzene at room temperature. 
 

 

Scheme 4.2. Synthesis of donor-acceptor copolymers PBDF-DPP, PBDT-DPP, and 
PBDSe-DPP. 

 
Table 4.1.  Molecular weight and thermal data for Polymers. 
 

Polymer Mw
b (kDa) Mn

b (kDa) PDI DPn Td
c (°C) 

PBDF-DPP 25.7 14.6 1.8 16 333 
PBDT-DPP 36.4 21.6 1.7 24 390 
PBDSe-DPP 29.1 18.5 1.6 18 345 

a Isolated yield.  b Molecular weight data was obtained by GPC.      
c 5% weight loss determined by TGA in air. 

 

The polymers were characterized by 1H NMR and the spectra are in agreement with the 

proposed polymer structures (see ESI†). The molecular weights were estimated using gel 

permeation chromatography (GPC) at 50 °C using CHCl3 as the eluent and the resulting data 

is summarized in Table 4.1. All of the polymers displayed reasonably similar molecular 

weights (Mn = 15-21 kDa), with PBDT-DPP having the highest degree of polymerization, 

followed subsequently by PBDSe-DPP and PBDF-DPP.  It should be noted that while our 

previous report of PBDF-DPP as (P1) had an Mw = 55.6 kDa, and a PDI = 1.9, this data was 

obtained using THF as the eluent on a different GPC instrument. 
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4.3.2 Thermal properties 

The thermal properties of the polymers were evaluated using thermal gravimetric analysis 

(TGA) and differential scanning calorimetry (DSC). TGA results are summarized in Table 

4.1 and indicate that 5% weight loss onsets occurred between 333 - 390 °C. . DSC did not 

reveal any observable phase transitions for temperatures up to 200 °C; however, observable 

melting points were seen for all four polymers above 235 °C. These thermal characteristics 

are indicative of good stability above the operational temperature threshold of organic 

photovoltaic devices.   

4.3.3 Optical and electrochemical properties  

The normalized absorption spectra of PBDF-DPP, PBDT-DPP, and PBDSe-DPP in 

dilute CHCl3 solution and thin films are shown in Figures 4.1 and 4.2, respectively, and the 

optical data is summarized in Table 4.2. Each of the three polymers exhibit a broad 

absorption spectra with a significant, low-energy band that corresponds to intermolecular 

charge transfer between the electron-donating and electron-accepting units, while localized 

π-π* transitions are responsible for the smaller, high-energy absorbance band.  This dual-

band absorbance profile is typical for such donor-acceptor copolymers.53 In solution, the λmax 

of PBDT-DPP and PBDSe-DPP is practically identical, occurring at 639 and 641 nm, 

respectively, while PBDF-DPP shows a comparatively large bathochromic shift in λmax of 

almost 20 nm to 658 nm. Interestingly, the furan-containing polymer PBDF-DPP exhibits a 

significant low-energy shoulder at around 710 nm that is only slightly present in the selenium 

analogue PBDSe-DPP and cannot be observed at all in the sulfur analogue PBDT-DPP.  

As thin films, all three polymers show a red-shift from the maximum absorbance peak of 

polymer solutions of ~5-10 nm. While all three polymers display an increase in the low 
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Figure 4.1. UV-Vis absorption of PBDF-DPP, PBDT-DPP, and PBDSe-DPP in CHCl3. 

 

Figure 4.2. UV-Vis absorption of PBDF-DPP, PBDT-DPP, and PBDSe-DPP as thin films. 
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energy vibrational components as thin films, only PBDF-DPP displays a significant increase 

that results in a new max of 744 nm. PBDT-DPP and PBDSe-DPP exhibit nearly identical 

absorbance profiles and both have similar low-energy shoulders at around 750 nm.  PBDF-

DPP also exhibits a smaller shoulder reaching further into the near-IR region at ~825 nm.  

This divide in absorption can also be seen in the optical band gaps of the polymers,  

estimated from the onset wavelength of the film absorption, where have values of 

approximately 1.50 eV, has a markedly lower band gap of about 1.40 eV.  The fact that 

PBDF-DPP displays a significantly more broadened absorption band than either PBDT-DPP 

or PBDSe-DPP, despite having the lowest molecular weight of the three polymers, illustrates 

that the differences in absorbance are not correlated with the slight differences in molecular 

weights for this polymers series. This suggests that it is the varying of the heteroatoms 

affecting the optical properties of the polymers. 

 
 
Table 4.2.  Optical and electronic properties for P1-P4. 
 

Polymer     
     (nm)     

     (nm)   
   a  (eV) HOMOb  

(eV) 
LUMOb  

(eV) 
  
  d 

(eV) 

PBDF-DPP 658 774, 668 1.40 -5.48 -3.67 1.81 

PBT-DPP 639 643, 593 1.49 -5.55 -3.56 1.99 

PBDSe-DPP 641 646, 595 1.50 -5.56 -3.63 1.93 
a Estimated from the absorption onset of the film. b HOMO= -(         + 5.1) eV. c LUMO = -
(           + 5.1) eV. d      = LUMO - HOMO. 

 

To evaluate the electrochemical properties of the polymers, the redox behavior was 

measured by cyclic voltammetry. All four polymers exhibit measureable and reproducible 

oxidation and reduction processes (see 4.7 Supporting Information). The HOMO and LUMO 

levels were estimated from the onset of oxidation and reduction using the absolute energy 

level of ferrocene/ferrocenium (Fc/Fc+) as 5.1 eV under vacuum and are summarized in 

Table 4.2.54 The HOMO levels for all three polymers were deep enough to guarantee good 

air stability, with those of polymers PBDT-DPP and PBDSe-DPP nearly identical at around 

-5.55 eV. The HOMO level for PBDT-DPP was somewhat higher at -5.48 eV. This 

destabilization of the HOMO is likely due to the presence of the electron-rich furans on the 
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BDF ring.55 The LUMO level of PBDT-DPP was the most stabilized ranged from -3.7 to -3.8 

eV. The electrochemical band gaps are in good agreement with the optical data, with PBDF-

DPP having the narrowest electrochemical band-gap of 1.8 eV. As expected, the optical band 

gaps are all estimated to be slightly smaller than the electrochemical band gap, which 

correlates well to the expected energy barrier associated with the interface of the polymer 

film and the electrode surface.54 These values are  suggest that replacing the commonly used 

sulfur-containing heterocycles with isoelectronic atoms such as oxygen and selenium can 

afford donor-acceptor polymers with more favorable energy levels for use in OPVs.  

4.3.4 Photovoltaic Devices 

The performance of all four polymers in OPVs was evaluated using [6,6]-phenyl-C71-

butyric acid methyl ester (PC71BM) as the electron acceptor with a device configuration of 

indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): polystyrene sulfonate 

(PEDOT:PSS)/polymer:PC71BM/LiF/Al. Our previous report of PBDF-DPP found that an 

identical device configuration using a 1:2 weight-to-weight ratio of polymer/PCBM gave the 

best results; however an increased w/w ratio of 1:4 was found to give better results for the 

two new polymers PBDT-DPP and PBDSe-DPP. The active layer was deposited from 30 

mg/mL o-DCB solutions, using processing conditions selected to yield a thickness of about 

100 nm. We initially evaluated chloronaphthalene (CN) as a high-boiling solvent additive for 

the active layers of PBDT-DPP and PBDSe-DPP,56 as a 3% addition of CN was found to 

significantly improve polymer/PCBM blend morphology and overall device performance in 

the BDF-containing analogue, P1, from our previous report. However, for the two new 

polymers reported here, we actually observed a performance decrease of ~8%, primarily due 

to a reduction in the short circuit current density. Diiodooctane (DIO) was also investigated 

as a solvent additive,57 and did result in better performance for the new polymers, PBDT-

DPP and PBDSe-DPP, while P1 saw no improvement in the PCE in our previous report. The 

current density-voltage (J-V) curves of the OPVs are shown in Figure 4.3. The resultant 

photovoltaic performance, including short circuit current density (JSC), open circuit voltage 

(VOC), fill factor (FF) and power conversion efficiency (PCE) are summarized in Table 4.3. 
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Table 4.3. Photovoltaic device performance of P1-P4 with PCBM. 
 

Polymer Additive JSC (mA/cm2) VOC (V) FF  PCE (%) 
P1 none -5.1 0.70 0.63 2.28 

 3% CN -7.0 0.69 0.60 2.89 
PBDF-DPP none -4.88 0.68 0.67 2.20 
PBDT-DPP none -3.57 0.85 0.32 0.96 

 DIO -3.30 0.82 0.51 1.38 
PBDSe-DPP none -4.73 0.85 0.32 1.29 

 DIO -5.03 0.85 0.34 1.44 
 

 

 

Figure 4.3. Current-voltage characteristics of PBDF-DPP-, PBDT-DPP-, and PBDSe-DPP-
based OPVs without solvent additives (left) and using 3% CN (PBDF-DPP) or using 3% 
DIO (PBDT-DPP and PBDSe-DPP) (right). 

 
Among the devices fabricated, the oxygen-containing analogues PBDF-DPP gave the 

highest PCEs both without (~2.2%) and with (~2.9%) solvent additives, which includes the 

previously reported P1. Without CN additives, the differences in molecular weight between 

P1 and PBDF-DPP had no significant effect on performance. Both the sulfur- and selenium-

containing analogues PBDT-DPP and PBDSe-DPP experienced significantly reduced 

efficiencies by around 50% as compared with PBDF-DPP. Despite this poor performance, 

PBDT-DPP and PBDSe-DPP both displayed VOCs 0.15 eV higher than PBDF-DPP, which 

correlates well with their deeper HOMO levels. In all cases, the sulfur and selenium 

analogues suffered from reduced JSC values as compared to BDF-DPP, which was expected 

to result from their larger optical band gaps and diminished absorbance of the solar spectrum. 

These discrepancies between the VOCs could likely have mitigated each other had the FF been 
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similar between the different devices. Ultimately, the PBDT-DPP- and PBDSe-DPP-based 

devices suffered from FFs half that of the PBDF-DPP-based devices. 

Between the devices fabricated from the new polymers PBDT-DPP and PBDSe-DPP, 

the VOC was nearly identical with and without solvent additives which reflects the similar 

HOMO levels of the two polymers.  The substitution of selenium resulted in better 

efficiencies in all cases as compared with sulfur. In the devices without DIO, this is primarily 

due to an increase of 1.16 mA/cm2 JSC, a gain of ~32%, which is similar to a report of 

selenium substitution by Jen and co-workers.58 Interestingly, both polymers see increased 

performance with DIO additive, but for differing reasons.  The sulfur analogue, PBDT-DPP, 

experiences a sizeable ~30% improvement in PCE due to a large increase in FF, whereas its 

selenium-containing counterpart gives a much smaller ~10% PCE improvement resulting 

from an enhancement of the JSC.  

 

4.4 CONCLUSIONS 

To compare the effects of the chalcogen heteroartom substitution on the optoelectronic 

properties and the performance in OPVs, we have synthesized two new monomers based on 

benzo[1,2-b:4,5-b’]dithiophene or benzo[1,2-b:4,5-b’]diselenophene and the subsequent 

donor-acceptor copolymers with furan-flanked diketopyrrolopyrrole. These monomers and 

polymers are structural analogues to 3,7-didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-

b:4,5-b']difuran as well as the polymer P1 previously reported by our group, and the resulting 

structure-function properties are summarized herein. The BDT and BDSe-based polymers 

displayed similar optoelectronic properties, with an estimated average HOMOs of -5.55 eV, 

LUMOs of close to -3.60 eV and optical band-gaps of around 1.5 eV. Both HOMO energy 

levels were more stabilized than their more electron rich, oxygen-containing counterpart 

PBDF-DPP. Also, as expected, the selenium analogue had a more stabilized LUMO than its 

sulfur-based counterpart. All three polymers had relatively similar molecular weights, with 

PBDF-DPP showing the lowest degree of polymerization. Despite higher-lying HOMO 

levels that give rise to a lower VOC and its lower molecular weight, PBDF-DPP performed 

significantly better than either PBDT-DPP or PBDSe-DPP in OPVs.  These results are 

primarily due to the superior JSC and FF achieved by the PBDF-DPP-based devices. This 

study further demonstrates that the incorporation of different heteroatoms into polymer 
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backbones typically dominated by thiophene can have impactful effects on the properties and 

resulting performance of polymer-based semiconductors. 

 

4.5 EXPERIMENTAL 

4.5.1 Materials 

All reactions were carried out at ambient atmosphere and temperature (18-25 °C) unless 

otherwise noted. Tetrahydrofuran and toluene were dried using an Innovative Technologies 

solvent purification system.  Solvents used for Pd-catalyzed reactions were deoxygentated 

prior to use by bubbling a stream of argon through the stirred solvent for 30-60 minutes.  

Trimethylsilyl acetylene was purchased from GFS chemicals. Bis(triphenylphosphine)-

palladium(II) dichloride was purchased from Oakwood Products, Inc. 3-Decylthiophene59, 

1,4-dibromo-2,5-diidobenzene49, 1,4-dibromo-2,5-bis(trimethylsilylethnynyl) benzene,50 4-

bis(methylthio)-2,5-bis(trimethylsilylethnynyl)benzene (1a)51 and 1,4-bis(methylseleno)-2,5-

bis(trimethylsilylethnynyl)benzene (1b)51 were synthesized according to literature proced-

ures.  All other chemicals were purchased from Sigma-Aldrich and used without further 

purification.  

4.5.2 Characterization 

Nuclear magnetic resonance (NMR) spectra were carried out in CDCl3 and recorded on 

Varian VXR (300 MHz), Varian MR (400 MHz) or a Bruker Avance III (600 MHz). 1H 

NMR spectra were internally referenced to the residual protonated solvent peak. In all 

spectra, chemical shifts are given in ppm (δ) relative to the solvent. High-resolution mass 

spectra (HRMS) were recorded on a double-focusing magnetic sector mass spectrometer 

using ESI or APCI, as noted, at 70 eV. Melting points were obtained using a MELTEMP 

melting point apparatus with an upper temperature limit of 260 °C. Gel permeation 

chromatography (GPC) measurements were performed on a separation module equipped with 

three 5 μm I-gel columns connected in series (guard, HMW, MMW and LMW) with a UV-

Vis detector. Analyses were performed at 50 °C using CDHl3 as the eluent with a flow rate of 

1.0 mL/min. Calibration was based on polystyrene standards. Thermal gravimetric analysis 

measurements were performed over an interval of 30 - 850 °C at a heating rate of 20 °C/min 

under ambient atmosphere. Differential scanning calorimetry was performed using a first 
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scan heating rate of 15 °C/min to erase thermal history and a second scan to measure 

transitions between 0 - 330 °C under nitrogen. Transitions were also measured with cooling 

at 15 °C/min.  Cyclic voltammetry was performed using a e-DAQ e-corder 410 potentiostat 

with a scanning rate of 100 mV/s. The polymer solutions (1-2 mg/mL) were drop-cast on a 

platinum electrode. Ag/Ag+ was used as the reference electrode and a platinum wire as the 

auxiliary electrode.  The reported values are referenced to Fc/Fc+ (-5.1 eV versus vacuum).  

All electrochemistry experiments were performed in deoxygenated CH3CN under an argon 

atmosphere using 0.1 M tetrabutylammonium hexafluorophosphate as the electrolyte. 

Absorption spectra were obtained on a photodiode-array Agilent 8453 UV-visible 

spectrophotometer using polymer solutions in CHCl3 and thin films. The films were made by 

spin-coating 25 x 25 x 1 mm glass slides using solutions of polymer (2.5-5.0 mg/mL) in 

CHCl3/o-dichlorobenzene at a spin rate of 1200 rpm on a Headway Research, Inc. PWM32 

spin-coater.  

4.5.3 Fabrication of photovoltaic devices 

All devices were produced via a solution-based, spin-casting fabrication process. All 

polymers were mixed with PC71BM (SES Research) (mixed 1:2 with a total solution 

concentration of 30 mg/mL for PC71BM) then dissolved in o-dichlorobenzene and stirred at 

95°C for 48 hours. ITO coated glass slides (Delta Technologies) were cleaned by consecutive 

10 minute sonications in (i) MucasolTM detergent (dissolved in deionized water), 2x, (ii) 

deionized water, (iii) acetone, and then (iv) isopropanol. The slides were then dried in an 

oven for at least 3 hours and cleaned with air plasma (Harrick Scientific plasma cleaner) for 

10 minutes. Filtered (0.45m) PEDOT:PSS (Clevios PTM) was spin-coated onto the prepared 

substrates (2000 rpm/60 sec) after first  being stirred for 10 minutes at room temperature. The 

PEDOT:PSS films were annealed at 150 °C for 30 minutes. After cooling, the substrates 

were transferred to an argon-filled glovebox.  After 48 hours of mixing, the polymer:PCBM 

solutions were filtered (0.45 m pore, GS-Tek) and simultaneously dropped onto the 

PEDOT:PSS-coated substrates and spin-cast at 1000 rpm for 120 seconds. The films were 

dried under vacuum overnight.  LiF (1 nm) and Al (100 nm) were successively thermally 

evaporated through a shadow mask under vacuum to complete the devices. J-V data was 
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generated by illuminating the devices using an ETH quartzline lamp at 1 sun (calibrated 

using a crystalline silicon photodiode with a KG-5 filter). 

4.5.4 Synthesis 

General procedure for the synthesis of copolymers. An oven-dried, 25 mL Schlenk flask 

was charged with dry, deoxygenated toluene (5-10 mL), bisstannane 7a, 7b, or 8 (1.0 equiv.), 

and diketopyrrolopyrrole 8 (1.0 equiv.). The stirred solution was sparged with argon for 10 

minutes and followed by the addition of tris(dibenzylideneacetone)dipalladium(0) (2 mol%) 

and tri(o-tolyl)phosphine (8 mol %). The reaction mixture was heated to reflux and stirred, 

under argon, for 48 hours. The polymer was end-capped by the subsequent addition of an 

excess amount of trimethyl(phenyl)tin and iodobenzene, each followed by a 4 hour period of 

reflux. The reaction mixture was cooled to 50 °C and diluted with chloroform.  A small 

portion of SiliaMetS® Cysteine was added and the reaction mixture was stirred for 8 hours 

followed by precipitation into cold methanol and filtration. The polymer was purified via 

Soxhlet extraction by subsequently rinsing with methanol, acetone and hexanes and finally 

extracted with chloroform. Most of the chloroform was removed in vacuo and the polymer 

was precipitated into methanol, collected by filtration and dried in vacuo. 

 

Synthesis of PBDT-DPP. Following the general polymerization procedure using bisstannane 

7a and diketopyrrolopyrrole 9 afforded a dark solid (287 mg, 76%). 1H NMR (400 MHz, 

CDCl3): δ 8.51 (2H, br), 8.20 (2H, br), 7.34 (2H, br), 6.84 (2H, br), 4.17 (4H, br), 2.89 (4H, 

br), 2.61 (4H, br), 1.98 (2H, br), 1.60-1.75 (8H, br), 1.20-1.51 (72H, br), 0.82-0.95 (24H, br). 

GPC (CHCl3, 50 °C): Mw = 36.4 kDa, Mn = 21.3 kDa, PDI = 1.71. 

 

Synthesis of PBDSe-DPP. Following the general polymerization procedure using 

bisstannane 7b, diketopyrrolopyrrole 9 afforded a dark solid (264 mg, 70%). 1H NMR (400 

MHz, CDCl3): δ 8.51 (2H, br), 8.23 (2H, br), 7.33 (2H, br), 6.84 (2H, br), 4.17 (4H, br), 2.82 

(4H, br), 2.59 (4H, br), 1.98 (8H, br), 1.20-1.55 (72H, br), 0.83-0.95 (24H, br). GPC (CHCl3, 

50 °C): Mw = 29.1, Mn = 18.5, PDI = 1.57. 

 

Synthesis of PBDF-DPP. Following the general polymerization procedure using bisstannane 

8 and diketopyrrolopyrrole 9 afforded a dark solid (141 mg, 82%). 1H NMR (400 MHz, 
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CDCl3): δ 1H NMR (400 MHz, CDCl3): δ 8.51 (2H, br), 7.57 (2H, br), 7.34 (2H, br), 6.85 

(2H, br), 4.19 (4H, br), 2.79-2.96 (8H, br), 1.99 (2H, br), 1.68-1.81 (8H, br), 1.22-1.52 (72H, 

br), 0.82-0.96 (24H, br). GPC (CHCl3, 50 °C): Mw = 25.7 kDa, Mn = 14.6 kDa, PDI = 1.76. 
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4.7 SUPPORTING INFORMATION 

4.7.1 Synthetic Procedures 
 
 

 
 
3-Decyl-2-iodothiophene (S1).  To a stirred solution of 3-decylthiophene (2.25 g, 10.0 

mmol) in 30 mL of CHCl3/AcOH (1:1) at 0 °C was added N-iodosuccinimide (2.36 g, 10.5 

mmol) in one portion.  The reaction was warmed to room temperature and stirred in the 

absence of light, under argon, for 16 hours.  A 1M sodium thiosulfate solution was added to 

the reaction mixture to neutralize the residual iodine.  The layers were separated and the 

aqueous layer was extracted with CH2Cl2 (x3). The combined organic layers were then 

neutralized with 1 M KOH, subsequently rinsed with H2O and brine, and dried over MgSO4.  

The solvent was removed in vacuo and the crude oil was purified on a short plug of silica 

with hexanes as the eluent to afford a pale yellow oil (3.25 g, 93%). 1H NMR (400 MHz; 



www.manaraa.com

151 

CDCl3) δ 0.88 (3H, t, J = 6.7 Hz), 1.22-1.36 (14H, m), 1.56 (2H, m), 2.54 (2H, t, J = 7.8 Hz), 

6.75 (1H, d, J = 5.6 Hz), 7.38 (1H, d, J = 5.5 Hz); 13C NMR (100 MHz; CDCl3) δ 14.33, 

22.87, 29.39, 29.61, 29.75, 29.79, 29.88, 30.20, 32.07, 32.25, 74.15, 128.03, 130.36, 147.22. 

HRMS (APCI) m/z:  [M + H]+  calcd for C14H24IS, 351.0638; found, 351.0645; deviation, -

2.0 ppm. 

 

 
 

(2,5-Diethynyl-1,4-phenylene)bis(methylsulfane) (2a).  To a stirred solution of 

bis(trimethylsilylethyne) 1a (1.09 g, 3.0 mmol) in 30 mL of CH2Cl2/MeOH (1:1) was added 

K2CO3 (1.66 g, 12.0 mmol) in one portion.  The suspension was stirred at room temperature 

for 1 hour and poured into H2O. The layers were separated and the aqueous layer was 

extracted with CH2Cl2 (x3). The combined organic layers were rinsed with brine and dried 

over MgSO4. The solvent was removed in vacuo and the crude product was purified on a 

short plug of silica with CH2Cl2/hexanes (2:1) as the eluent to afford a yellow solid (648 mg, 

99%), mp 165 °C (decomp). 1H NMR (300 MHz; CDCl3) δ 2.49 (6H, s), 3.56 (2H, s), 7.25 

(2H, s); 13C NMR (100 MHz; CDCl3) δ 15.62, 80.62, 85.37, 121.71, 129.25, 138.12. HRMS 

(APCI) m/z:  [M + H]+  calcd for C12H11S2, 219.0297; found, 219.0295; deviation, 0.8 ppm. 

 

(2,5-diethynyl-1,4-phenylene)bis(methylselane)  (2a). To a stirred solution of 

bis(trimethylsilylethyne) 1b (1.37 g, 3.0 mmol) in 50 ml of THF/MeOH (1:1) was added 

K2CO3 (1.66 g, 12.0 mmol) in one portion.  The suspension was stirred at room temperature 

for 1 hour and poured into H2O. The layers were separated and the aqueous layer was 

extracted with CH2Cl2 (x3). The combined organic layers were rinsed with brine and dried 

over MgSO4. The solvent was removed in vacuo and the crude product was purified by 

recrystalization from CHCl3/EtOH to afford a bright yellow solid. (750 mg, 80%). 1H NMR 

(400 MHz; CDCl3) δ 2.35 (6H, s), 3.53 (2H, s), 7.34 (2H, s); 13C NMR (100 MHz; CDCl3) δ 
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6.74, 81.42, 84.75, 124.02, 132.19, 133.15. HRMS (ESI) m/z:  [M + H]+  calcd for C12H10Se2, 

313.9114; found, 313.9113; deviation, 0.3 ppm. 

 

2,2'-((2,5-Bis(methylthio)-1,4-phenylene)bis(ethyne-2,1-diyl))bis(3-decylthiophene) (3a).  

To a stirred, deoxygenated solution of S1 (2.63 g, 7.5 mmol) in 27 mL of THF/Et3N (2:1) 

was added 2a (648 mg, 3.0 mmol).  The reaction mixture was stirred at room temperature, 

under argon for 10 min, at which time Pd(PPh3)2Cl2 (105 mg, 5 mol %) and CuI (57 mg, 10 

mol %) were added.  The reaction mixture was stirred overnight at room temperature.  Most 

of the solvent was then removed in vacuo and the resulting slurry was poured into water and 

extracted with CH2Cl2 (x3). The combined organic layers were rinsed with brine and dried 

over MgSO4.  The solvent was removed in vacuo and the crude product was purified by 

column chromatography on silica using a gradient of hexane to hexane/CH2Cl2 (9:1) as the 

eluent to afford bright yellow crystals (1.47 g, 73%), mp 48 °C.  1H NMR (400 MHz; CDCl3) 

δ 0.88 (6H, t, J = 6.8 Hz), 1.22-1.40 (28H, m), 1.68 (4H, p, J = 7.5 Hz), 2.52 (6H, s), 2.83 

(4H, t, J = 7.8 Hz), 6.91 (2H, d, J = 5.1 Hz), 7.23 (2H, d, J = 5.1 Hz), 7.25 (2H, s); 13C NMR 

(100 MHz; CDCl3) δ 14.28, 15.66, 22.84, 29.52, 29.59, 29.66, 29.82, 29.88, 30.63, 32.07, 

90.79, 92.69, 117.91, 122.14, 126.96, 127.78, 128.55, 137.29, 149.03. HRMS (APCI) m/z:  

[M + H]+ calcd for C40H55S4, 663.3181; found, 663.3184; deviation, -0.4 ppm. 

 

2,2'-((2,5-Bis(methylselanyl)-1,4-phenylene)bis(ethyne-2,1-diyl))bis(3-decylthiophene) 

(3b). The title compound was prepared in a similar manner as compound 3a from compound 

S1 (2.26 g, 6.5 mmol) and compound  2b (805 g, 2.6 mmol) to a afford a bright yellow solid 

(1.42 g, 73%), mp 131 °C. 1H NMR (x MHz; CDCl3) δ 0.87 (6H, t, J = 6.8 Hz), 1.20-1.42 

(28H, m), 1.67 (4H, p, J = 7.5 Hz), 2.39 (6H, s), 2.84 (xH, t, J = 7.9 Hz), 6.91 (2H, d, J = 5.1 

Hz), 7.23 (2H, d, J = 5.1 Hz), 7.34 (2H, s); 13C NMR (100 MHz; CDCl3) δ 6.68, 14.29, 

22.84, 29.52, 29.58, 29.67, 29.81, 29.92, 30.66, 32.06, 90.11, 93.50, 117.83, 124.39, 127.05, 

128.55, 130.79, 132.45, 148.97. HRMS (ESI) m/z:  [M + H]+  calcd for C40H55S2Se2, 

759.2077; found, 759.2072; deviation, -0.7 ppm. 
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2,6-Bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-b']dithiophene (4a).  Compound 

3a (1.47 g, 2.2 mmol) was dissolved in 150 mL of CH2Cl2 and cooled to 0 °C.  While 

stirring, a solution of iodine (1.68 g, 6.6 mmol) in 50 mL of CH2Cl2 was added dropwise 

over 10 minutes.  Upon completion of the addition, the reaction mixture was warmed to room 

temperature and stirred for 2 hours.  The reaction was quenched by the addition of 50 mL of 

saturated aqueous sodium thiosulfate solution, the layers were separated and the aqueous 

layer was extracted with CH2Cl2 (x2). The organic layers were combined, dried over MgSO4 

and the solvents were removed in vacuo. The crude product was purified by recrystalization 

from a mixture of CHCl3 and ethanol and collected by filtration, followed by rinsing with 

cold ethanol to afford fine, off-white crystals. (1.78 g, 91%), mp 97 °C. 1H NMR (400 MHz; 

CDCl3) δ 0.85 (6H, t, J = 6.9 Hz), δ 1.16-1.28 (28H, m), δ 1.57 (4H, m), δ 2.61 (4H, t, J = 7.9 

Hz), δ 7.05 (2H, d, J = 5.1 Hz), δ 7.45 (2H, d, J = 5.4 Hz), δ 8.22 (2H, s); 13C NMR (100 

MHz; CDCl3) δ 14.30, 22.82, 29.45, 29.48, 29.49, 29.67, 29.73, 29.73, 30.64, 32.04, 77.36, 

84.18, 119.51, 127.19, 129.03, 129.10, 138.04, 140.26, 144.10. HRMS (APCI) m/z:  [M + 

H]+  calcd for C38H49I2S2, 887.0801; found, 887.0782; deviation, 2.1 ppm. 

 

2,6-Bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-b']diselenophene (4b).  The title 

compound was prepared in a similar manner as compound 4a from compound 3b (1.40 g, 1.9 

mmol) to a afford an off-white solid (1.66 g, 92%), mp 59 °C. 1H NMR (x MHz; CDCl3) δ 

0.85 (6H, t, J = 6.9 Hz), 1.16-1.29 (28H, m), 1.58 (4H, m), 2.59 (4H, t, J = 7.9 Hz), 7.03 (2H, 

d, J = 5.1 Hz), 7.43 (2H, d, J = 5.1 Hz), 8.36 (2H, s); 13C NMR (100 MHz; CDCl3) δ 14.31, 

22.82, 29.45, 29.51, 29.54, 29.54, 29.67, 29.73, 30.44, 32.03, 87.52, 125.27, 126.93, 129.08, 

131.65, 138.73, 139.13, 141.83, 143.27. HRMS (APCI) m/z:  [M + H]+  calcd for 

C38H49I2S2Se2, 982.9690; found, 982.9693; deviation, -0.3 ppm. 
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3,7-Di(dec-1-yn-1-yl)-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (5a).  

To a stirred, deoxygenated solution of 4a (1.60 g, 1.8 mmol) and 1-decyne (1.00 g, 7.2 

mmol) in 40 mL of DMF/Et2NH (1:1) was added Pd(PPh3)2Cl2 (63 mg, 5 mol %) and CuI 

(17 mg, 5 mol %). The solution was stirred overnight under argon at room temperature.  The 

reaction mixture was poured into H2O and extracted with CH2Cl2 (x3).  The combined 

organic layers were washed with H2O (x2), followed by brine (x1), dried over MgSO4 and 

the solvent was removed in vacuo. The crude product was purified by chromatography on 

silica gel using a gradient of hexane to hexane/CH2Cl2 (95:5) as the eluent to afford bright 

yellow crystals (1.44 g, 88%), mp 46 °C. 1H NMR δ 0.88 (12H, m), δ 1.18-1.36 (44H, m), δ 

1.46 (4H, m), δ1.65 (8H, m), δ 2.51 (4H, t, J = 7.0 Hz), 2.83 (4H, t, J = 7.9 Hz), 7.00 (2H, d, 

J = 5.1 Hz), 7.36 (2H, d, J = 5.0 Hz), 8.27 (2H, s); 13C NMR (x MHz; CDCl3) δ 14.28, 20.05, 

22.83, 22.85, 22.85, 29.16, 29.34, 29.44, 29.49, 29.61, 29.66, 29.77, 30.88, 32.04, 32.05, 

74,71, 97.38, 116.14, 116.32, 126.27, 129.12, 129.49, 136.12, 138.68, 138.84, 142.94. 

HRMS (APCI) m/z:  [M + H]+  calcd for C58H83S4, 907.5372; found, 907.5370; deviation, 0.2 

ppm. 

 

3,7-Di(dec-1-yn-1-yl)-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-b']diselenophene 

(5b). The title compound was prepared in a similar manner as compound 5a from compound 

4b (1.60 g, 1.6 mmol) to a afford a bright yellow solid (1.46 g, 90%), mp 45 °C. 1H NMR (x 

MHz; CDCl3) δ 0.87 (12H, m) 1.18-1.34 (44H, m), 1.44 (4H, m), 1.62 (8H, m), 2.47 (4H, t, J 

= 7.0 Hz), 2.78 (4H, t, J = 7.8 Hz), 6.99 (2H, d, J = 5.1 Hz), 7.34 (2H, d, J = 5.1 Hz), 8.35 

(2H, s; 13C NMR (100 MHz; CDCl3) δ 14.29, 14.29, 19.99, 22.83, 22.86, 28.81, 29.13, 29.35, 

29.46, 29.49, 29.61, 29.66, 29.77, 29.80, 30.79, 32.05, 32.05, 76.09, 96.38, 119.80, 121.53, 

126.13, 129.42, 131.29, 137.07, 140.72, 141.26, 142.49. HRMS (ESI) m/z:  [M + H]+  calcd 

for C58H83S2Se2, 1003.4261; found, 1003.4282; deviation, -2.3 ppm. 

 

 

3,7-Didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (6a). bisalkyne 

5a (1.43 g, 1.6 mmol) was dissolved in 40 mL of THF/ethanol (2:1) and Pd/C (10 %, 426 

mg, 0.4 mmol) was added to the solution.  The resulting mixture was placed in a Parr bomb 

apparatus, flushed twice with H2 and stirred under pressurized H2 (500 PSI) for 19 days at 
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room temperature.  The reaction mixture was filtered through a pad of Celite to remove the 

Pd/C and rinsed with THF.  The solvent was removed in vacuo and the resulting solid was 

purified on a silica gel plug with hexane as the eluent to afford a pale yellow solid (1.11 g, 

77%), mp 77 °C. 1H NMR (400 MHz; CDCl3) δ 0.86 (12H, m), 1.18-1.35 (56H, m), 1.57 

(4H, m), 1.65 (4H, m), 2.58 (4H, t, J = 7.9 Hz), 2.81 (4H, t, J = 7.9 Hz), 7.01 (2H, d, J = 5.2 

Hz), 7.36 (2H, d, J = 5.3 Hz), 8.15 (2H, s); 13C NMR (100 MHz; CDCl3) δ14.28, 22.82, 

22.83, 27.58, 29.15, 29.47, 29.49, 29.56, 29.58, 29.74, 29.77, 29.95, 30.10, 30.91, 32.04, 

32.06, 115.35, 125.97, 128.86, 128.87, 130.31, 135.86, 137.30, 137.76, 142.98. HRMS (ESI) 

m/z:  [M + H]+  calcd for C58H91S4, 915.5998; found, 914.5981; deviation, 1.9 ppm. 

 

Alternative procedure for the synthesis of 6a. A solution of compound 5a (1.65 g, 1.80 

mmol) in 9:1 THF/EtOH (10 mL) was pumped through a flow hydrogenation reactor 

(ThalesNano H-Cube ProTM) at 125 ºC, 100 bar, and a flow rate of 0.5 mL/min.  The catalyst 

used was a 70 mm 10% Pd/C pre-packed cartridge (CatCart®).  The solution was recycled 

through the reactor at these conditions until hydrogenation was complete (confirmed by 1H 

NMR).  The solvent was removed in vacuo to afford an off-white solid (1.61 g, 97%). 

 

3,7-Didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-b']diselenophene (6b).  A 

solution of compound 5b (0.44 g, 0.44 mmol) in 9:1 THF/EtOH (10 mL) was pumped 

through a flow hydrogenation reactor (ThalesNano H-Cube ProTM) at 125 ºC, 100 bar, and a 

flow rate of 0.5 mL/min.  The catalyst used was a 70 mm 10% Pd/C pre-packed cartridge 

(CatCart®).  The solution was recycled through the reactor at these conditions until 

hydrogenation was complete (confirmed by 1H NMR).  The solvent was removed in vacuo to 

afford an off-white solid (0.22 g, 51%), mp 71 °C. 1H NMR (600 MHz; CDCl3) δ 0.88 (12H, 

m), 1.17-1.36 (56H, m), 1.57 (4H, m), 1.63 (4H, m), 2.56 (4H, t, J = 7.8 Hz), 2.74 (4H, t, J = 

8.0 Hz), 6.99 (2H, d, J = 5.4 Hz), 7.34 (2H, d, J = 5.1 Hz), 8.18 (2H, s); 13C NMR (400 MHz; 

CDCl3) δ 14.28, 22.84, 28.77, 29.48, 29.50, 29.54, 29.60, 29.63, 29.72, 29.77, 29.87, 29.96, 

29.99, 30.48, 30.78, 32.07, 120.82, 125.86, 128.82, 131.01, 132.23, 138.56, 138.98, 139.93, 

142.30. HRMS (APCI) m/z:  [M + H]+  calcd for C58H91S2Se2, 1011.4887; found, 1011.4905; 

deviation, -1.8 ppm. 
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General procedure for synthesis of aryl bisstannanes (7a/7b): To a stirred solution of 6a 

or 6b in 20 mL of anhydrous THF, under argon, at 0 °C was added n-BuLi in hexanes (2.5 

M) dropwise. The reaction mixture was warmed to room temperature and stirred for 2 hours. 

A solution of trimethylstannyl chloride in THF (1.0 M) was then added to the reaction at 0 

°C and the reaction was warmed to room temperature, stirred overnight and poured into H2O. 

The layers were separated and the aqueous layer was extracted with ether (x3).  The 

combined organic layers were dried over MgSO4 and the solvent was removed in vacuo.  The 

resulting viscous oil was heated at 50-70 °C under a vacuum to remove residual Me3SnCl. 

 

(5,5'-(3,7-Didecylbenzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(4-decylthiophene-5,2-

diyl))bis(trimethylstannane) (7a). The title compound was synthesized from compound 6a 

using the general procedure for synthesis of aryl bisstannanes to afford a dark orange, highly 

viscous oil (707 mg, 98%). 1H NMR (400 MHz; CDCl3) δ 0.40 (18H, s) 0.87 (12H, m), 1.15-

1.35 (56H, m), 1.58 (4H, p, J = 7.4 Hz), 1.66 (4H, p, J = 7.8 Hz), 2.60 (4H, t, J = 8.1 Hz), 

2.81 (4H, t, J = 8.1 Hz), 7.07 (2H, s), 8.14 (2H, s); 13C NMR (100 MHz; CDCl3) δ -8.01, 

14.28, 22.83, 22.85, 27.58, 29.08, 29.48, 29.52, 29.54, 29.58, 29.64, 29.72, 29.76, 29.79, 

29.91, 30.10, 31.13, 32.06, 32.08, 115.22, 130.87, 134.79, 135.24, 137.09, 137.30, 137.78, 

138.55, 144.07. HRMS (ESI) m/z:  [M + H]+  calcd for C64H107S4Sn2, 1241.5305; found, 

1241.5282; deviation, 1.9 ppm. 

 

(5,5'-(3,7-Didecylbenzo[1,2-b:4,5-b']diselenophene-2,6-diyl)bis(4-decylthiophene-5,2-

diyl))bis(trimethylstannane) (7b). The title compound was synthesized from compound 6b 

using the general procedure for synthesis of aryl bisstannanes to afford a dark yellow, highly 

viscous oil (334 mg, 99%). 1H NMR (400 MHz; CDCl3) δ 0.40 (18H, s) 0.87 (12H, m), 1.17-

1.34 (56H, m), 1.541.69 (8H, m), 2.58 (4H, t, J = 8.0 Hz), 2.74 (4H, t, J = 8.0 Hz), 7.04 (2H, 
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s), 8.17 (2H, s); 13C NMR (100 MHz; CDCl3) δ -8.04, 14.31, 22.84, 22.87, 28.74, 29.13, 

29.50, 29.51, 29.54, 29.60, 29.74, 29.76, 29.79, 29.89, 29.98, 31.01, 32.07, 32.09, 120.68, 

132.65, 136.93, 137.02, 138.16, 138.26, 138.51, 139.93, 143.42. HRMS (ESI) m/z:  [M + H]+  

calcd for C64H107S2Se2Sn2, 1335.4213; found, 1335.4171; deviation, 3.0 ppm.  
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4.7.2 NMR Spectra and Analytical Data 
 

 
 
Figure S4.1. 1H NMR of 3-Decyl-2-iodothiophene (S1).   
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Figure S4.2. 13C NMR of 3-Decyl-2-iodothiophene (S1).   
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Figure S4.3. 1H NMR of 1,4-Bis(methylthio)-2,5-diethynylbenzene (2a).   
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Figure S4.4. 13C NMR of 1,4-Bis(methylthio)-2,5-diethynylbenzene (2a).  
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Figure S4.5. 1H NMR of 1,4-Bis(methylseleno)-2,5-diethynylbenzene (2b). 
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Figure S4.6. 13C NMR of 1,4-Bis(methylseleno)-2,5-diethynylbenzene (2b). 
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Figure S4.7. 1H NMR of 2,2'-((2,5-Bis(methylthio)-1,4-phenylene)bis(ethyne-2,1-
diyl))bis(3-decylthiophene) (3a). 
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Figure S4.8. 13C NMR of 2,2'-((2,5-Bis(methylthio)-1,4-phenylene)bis(ethyne-2,1-
diyl))bis(3-decylthiophene) (3a). 
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Figure S4.9. 1H NMR of 2,2'-((2,5-Bis(methyseleno)-1,4-phenylene)bis(ethyne-2,1-
diyl))bis(3-decylthiophene) (3b). 
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Figure S4.10. 13C NMR of 2,2'-((2,5-Bis(methyseleno)-1,4-phenylene)bis(ethyne-2,1-
diyl))bis(3-decylthiophene) (3b). 
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Figure S4.11. 1H NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-
b']dithiophene (4a).   
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Figure S4.12. 13C NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-
b']dithiophene (4a).   
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Figure S4.13. 1H NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-
b']diselenophene (4b).   
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Figure S4.14. 13C NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-
b']diselenophene (4b).   
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Figure S4.15. 1H NMR of 3,7-di(dec-1-yn-1-yl)-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-
b:4,5-b']dithiophene (5a). 
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Figure S4.16. 13C NMR of 3,7-di(dec-1-yn-1-yl)-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-
b:4,5-b']dithiophene (5a). 
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Figure S4.17. 1H NMR of 3,7-di(dec-1-yn-1-yl)-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-
b:4,5-b']diselenophene (5b). 
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Figure S4.18. 13C NMR of 3,7-di(dec-1-yn-1-yl)-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-
b:4,5-b']diselenophene (5b). 
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Figure S4.19. 1H NMR of 3,7-didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-
b']dithiophene (6a). 
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Figure S4.20. 13C NMR of 3,7-didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-
b']dithiophene (6a). 
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Figure S4.21. 1H NMR of 3,7-didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-
b']diselenophene (6b). 
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Figure S4.22. 13C NMR of 3,7-didecyl-2,6-bis(3-decylthiophen-2-yl)benzo[1,2-b:4,5-
b']diselenophene (6b). 
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Figure S4.23. 1H NMR of (5,5'-(3,7-didecylbenzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(4-
decylthiophene-5,2-diyl))bis(trimethylstannane) (7a). 
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Figure S4.24. 13C NMR of (5,5'-(3,7-didecylbenzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(4-
decylthiophene-5,2-diyl))bis(trimethylstannane) (7a). 



www.manaraa.com

182 

 
Figure S4.25. 1H NMR of (5,5'-(3,7-didecylbenzo[1,2-b:4,5-b']diselenophene-2,6-diyl)bis(4-
decylthiophene-5,2-diyl))bis(trimethylstannane) (7b). 
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Figure S4.26. 13C NMR of (5,5'-(3,7-didecylbenzo[1,2-b:4,5-b']diselenophene-2,6-
diyl)bis(4-decylthiophene-5,2-diyl))bis(trimethylstannane) (7b). 
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Figure S4.27. 1H NMR of PBDT-DPP. 
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Figure S4.28. 1H NMR of PBDSe-DPP. 
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Figure S4.27. Cyclic voltammetry traces for oxidation(top) and reduction (bottom) cycles of 
PBDF-DPP, PBDT-DPP, and PBDSe-DPP. 
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Figure S4.28. Cyclic voltammetry traces for oxidation(top) and reduction (bottom) cycles of 
PBDT-DPP and PBDSe-DPP. 
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CHAPTER 5 

 

Synthesis of a Series of Two Dimensional Benzo[1,2-b:4,5-b’]dichalcogene-based Donor-
Acceptor Copolymers with diketopyrrolopyrrole and their Performance in Polymer 
Solar Cells. 
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5.1 ABSTRACT 

An series of 2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']dichalcogenophene molecules were 

synthesized where 2-ethylhexylthien-5-yl side chains were affixed at the 3,7-positions on the 

BDC core via the Stille cross-coupling reaction.  These BDC heteroatoms were varied 

between oxygen, sulfur and selenium and utilized as the donor component in donor-acceptor 

copolymers. Furan-flanked 1,4-diketopyrrolo[3,4-c]pyrrole was used as the acceptor, where 

the alkyl side chains were varied between either branched 2-ethylhexyl and linear n-

tetradecyl to modify the film morphology of the materials.  The effects of 2-dimensional 
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conjugation were evaluated between the resulting six different BDC-based copolymers.  The 

polymers based on benzodifuran experienced the highest molecular weights and narrowest 

optical band gaps of 1.42 eV.  The performance of the polymers as an active layer material in 

bulk-heterojunction organic photovoltaic cells (OPVs) along with PC71BM was investigated.  

The resulting devices yielded power conversion efficiencies (PCEs) of 1.8-1.9 % for the 

benzodifuran and benzodithiophene-based devices. 

5.2 INTRODUCTION 

Due to the incredible increase in the amount of effort being poured into organic 

semiconducting research, impressive gains in performance are being realized. These 

endeavors have lead to the evolution of organic photovoltaic cells as a potential replacement 

for their inorganic counterparts due to their ability to be fabricated using low-cost methods 

like solution-processing and ink-jet printing and the possibility of manufacturing them into 

large-area, thin, and flexible solar cells.1-5 Another advantage afforded by these organic 

materials is that their properties such as frontier orbital energy levels, bad gaps, charge-

carrier mobility, and film morphology can be synthetically tuned at the molecular level.6-9 

Conjugated polymers synthesized from alternating electron-donating and electron-accepting 

moieties are being used as a highly successful strategy for tailoring properties of these 

materials and have lead to some of the highest power conversion efficiencies (PCEs) yet 

reported.10, 11  

Recently, there has been a growing amount of interest in the heteroatom substitution of 

oxygen or selenium in place of sulfur, most commonly used in thiophene and thiophene-

based materials, within the polymer backbone.12-15 The resulting compounds are isoelectronic 

to the thiophene-based molecules and provide a novel strategy for the tuning of various 

properties. For example, furan has the potential to result in reduced band gaps as it is less 

aromatic than thiophene and favors the quinoid form.16 In addition, oxygen has a smaller 

atomic radius than sulfur, resulting in less steric interactions between furan-based 

heterocycles and adjacent units as well as a more planar polymer backbone.17 Lastly, 

incorporation of furan into some conjugated polymers has been shown to vastly increase 

solubility, leading to improved performance in OPVs.18, 19  
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On the other hand, selenium is larger and more polarizable than either oxygen or sulfur, 

thus, polymers experiencing Se-Se lone-pair interactions can achieve higher charge-carrier 

mobilities.12, 20 Selenophene is also less aromatic than thiophene and can also lead to narrow 

band gap materials.21, 22 Additionally, while selenophene and thiophene have similar highest-

occupied molecular orbital (HOMO) levels, selenophene has a more delocalized lowest-

unoccupied molecular orbital (LUMO) which becomes more stabilized.23, 24 Thus, selenium 

has the potential to afford a balance between good solar spectrum absorbance, a result of 

narrow band gaps, and high open-circuit voltage (Voc), which is promoted by deeper HOMO 

levels. 

Another approach being targeted to improve performance of organic semiconductors is 

synthesis of 2-dimensional (2D) conjugated polymers and their incorporation into OPVs. In 

this strategy, functionalized aromatic groups are used as side chains instead of the alkyl or 

alkoxy chains common to most donor molecules.25 One advantage this provides is that the 

2D conjugation axis promotes broader absorption due to additional conjugation from the 

aromatic side-chains.26, 27 Another characteristic of 2D systems is a greater planarization 

effect on the molecule, which can lead to improved π-π interactions and higher hole 

mobility.28 Some of the most successful examples of beneficial 2D conjugation in donor-

acceptor (D-A) copolymers is through attaching aromatic side chains to the 4 and 8 positions 

of the popular donor-type molecule benzo[1,2-b:4,5-b′]dithiophene (BDT).29-32  

The influence of side chains on the alternative 3 and 7 position of BDT is relatively 

unexplored due to the lack of synthetic procedures and the potential synthetic difficulties 

involved in their production.33 Presently, we are reporting on a new synthetic route to BDT 

with side chains that can be introduced at the 3 and 7 positions on BDT via realization of the 

BDT-core by an iodine promoted double cyclization followed by a Stille cross-coupling 

reaction.34 These residual aryl-iodide synthetic handles can be used for a variety of other 

chemistry including the use of a Stille cross-coupling reaction to attach alkylthienyl side 

chains and evaluate 2D conjugation at the less studied 3 and 7 positions.  Also, we are not 

only limited to BDT as a BDC core. We have also used this synthetic route to make the 

oxygen and selenium analogues benzo[1,2-b:4,5-b′]difuran (BDF) and benzo[1,2-b:4,5-

b′]diselnophene (BDSe) to observe the effect of heteroatom substitution on this class of 

donor-type molecule.34, 35  
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In our past reports on BDCs, we have copolymerized these donors with the well-known 

acceptor-type molecule 3,6-di(2-furanyl)-1,4-diketopyrrolo[3,4-c]pyrrole (FDPP).34, 36 As a 

strong electron-accepting moiety, Diketopyrrolopyrrole (DPP) useful for favorable OPV 

properties such as intramolecular charge transfer within the polymer backbone and yielding 

stabilized LUMO levels.37-41 The DPP moiety also possesses a symmetric coplanar structure 

the can result in enhanced interactions between polymer chains.39, 42 The specific use of 

furanyl-flanked DPP has been shown to increase polymer solubility as compared with the 

more commonly used thienyl-flanked DPP without making significant sacrifices in 

optoelectronic properties. This enhanced solubility leads to better all-around performance 

when FDPP is incorporated into OPVs.11, 22, 25 For these reason, we report on the donor-

acceptors copolymers of a series of 2D BDCs with varied FDPP comonomers and their 

subsequent use of OPVs. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Synthesis and characterization  

The synthetic route to the benzo[1,2-b:4,5-b’]dichalcogenophene-based copolymers is 

shown in Scheme 5.1. Compounds 1a, 1b, and 1c were synthesized according to our previous 

reports. The synthesis of 2-Trimethylstannyl-(5-(2-ethylhexyl)thiophene is described in the 

Electronic Supplemental Information (ESI†). The compounds with 2-dimensional 

conjugation, 2a-2c, were synthesized by the Stille cross-coupling of 2-trimethylstannyl-(5-(2-

ethylhexyl)thiophene with either of the diidoarenes 1a, 1b, and 1c in excellent yields.  These 

compounds were then used to prepare the bisstannane monomers 3a-3c by lithiation with n-

butyllithium followed by the addition of an excess of trimethyltinchloride. 

The polymerizations were carried out by the Stille cross-coupling of either monomer 3a, 

3b, or 3c  with a furan-flanked diketopyrrolopyrrole dibromide functionalized with either 2-

ethylhexyl chains to give polymers P2DBDF-EH, P2DBDT-EH, and P2DBDSe-EH or n-

tetraldecyl chains to give polymers P2DBDF-C14, P2DBDT-C14, and P2DBDSe-C14 in 

moderate to good yields (54-88%).  This polymerization was followed purification by 

Soxhlet extraction with acetone, methanol, hexanes, and chloroform followed by stirring with 

functionalized silica, and precipitation into methanol. All of the polymers were soluble in 
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common organic solvents, such as THF, chloroform and chlorobenzene at room temperature. 

The polymers were characterized by 1H NMR and the spectra are in agreement with the 

expected polymer structures (see ESI†). The molecular weights were estimated using gel 

permeation chromatography (GPC) at 50 °C using CHCl3 as the eluent and the resulting data 

is summarized in Table 5.1. All of the polymers had similar number-averaged molecular 

weights (Mn = 20-25 kDa), with the BDT- and BDSe-containing copolymers also having 

similar weight-averaged molecular weights (Mw) and poly-dispersity index (PDI). 

Interestingly, both of the BDF-containing polymers displayed similar molecular weight to 

each other, but both had a higher Mw and broader PDI than either of the selenium- and sulfur-

containing counterparts. 

 

Scheme 5.1. Synthetic route to 2D-BDC monomers and the resulting copolymers with 
furanyl-diketopyrrolopyrrole (FDPP). 
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Table 5.1.  Molecular weight and thermal data for Polymers. 
 

Polymer Mw
a (kDa) Mn

a (kDa) PDI DPn Td
b (°C) 

P2DBDF-EH 72.6 22.2 3.30 50 347 

P2DBDF-C14 85.6 21.1 4.05 52 320 

P2DBDT-EH 40.5 21.7 1.87 27 389 

P2DBDT-C14 39.2 25.4 1.55 23 381 

P2DBDSe-EH 38.9 19.9 1.95 24 390 

P2DBDSe-C14 36.9 23.0 1.60 21 366 
a Molecular weight data was obtained by GPC.  b 5% weight loss 
determined by TGA in air. 

 

5.3.2 Thermal properties 

The thermal properties of the polymers were evaluated using thermal gravimetric analysis 

(TGA) and differential scanning calorimetry (DSC). TGA results are summarized in Table 1 

and indicate that 5 % weight loss onsets occurred between 320-390 °C. DSC did not reveal 

any observable phase transitions for temperatures up to 200 °C; however, observable melting 

points were seen for all four polymers above 235 °C. These thermal characteristics are 

indicative of good stability above the operational temperature threshold of organic 

photovoltaic devices.   

5.3.3 Optical and electrochemical properties  

The normalized absorption spectra of P2DBDF-EH, P2DBDT-EH, P2DBDSe-EH, P2DBDF-

C14, P2DBDT-C14, and P2DBDSe-C14 in dilute CHCl3 solution and thin films are shown in 

Figures 5.1 and 5.2, respectively, and the optical data is summarized in Table 5.2. Each of the 

three polymers exhibit a small, high-energy absorbance band which is a result of localized π-

π* transitions, while the broad, low-energy absorption band is indicative of intermolecular 

charge transfer between the electron-donating and electron-accepting units.  Typically, these 

donor-acceptor copolymer architectures result in this dual-band absorbance profile.43 In 

solution, the λmax of the BDT- and BDSe-based polymers is practically identical, occurring at 

around 649 and 651 nm, respectively, while both P2DBDF-EH and P2DBDF-C14 display a 

λmax that is bathochromicly shifted by 9 nm, on average. Also, the BDF- 
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Figure 5.1 UV-Vis absorption of all six BDC-based polymers in CHCl3. 

 
 Figure 5.2 UV-Vis absorption of all six BDC-based polymers as thin films. 
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containing polymers also show a low-energy shoulder around 720 nm that appears much 

smaller in the BDT and BDSe polymers.  

As thin films, all three ethylhexyl-DPP-based polymers, P2DBDF-EH, P2DBDT-EH, and 

P2DBDSe-EH show a negligible red-shift from the maximum absorbance peak of polymer 

solutions of ~3 nm, whereas the tetradecyl chain-containing polymers experience a slightly 

larger shift of ~6 nm. As compared with the solution absorbance, all six polymers display an 

increase in the low energy vibrational components as thin films; however, only P2DBDF-EH 

and P2DBDF-C14 display a significant increase that results in a new local max of 728 nm and 

737 nm. This effect is expected as both of these polymers display a significantly larger Mw, 

which leads to more interchain aggregation. For the most part, the BDT- and BDSe-based 

polymers exhibit nearly identical absorbance profiles and have very minor low-energy 

shoulders near 740 nm. The one exception to this is P2DBDT-C14, which has a slightly larger 

low energy shoulder, which may be a result of the narrower PDI of this polymer. The optical 

band gaps of the polymers, as estimated from the onset wavelength of the film absorption, 

highlight the significant difference in the breadth of low-energy absorbance between the 

polymers. Both BDF-based polymers have the most narrow optical band gaps, at 1.40 eV and 

are ~6 eV and ~8 eV narrower than their selenium or sulfur-containing analogues, 

respectively. While it is reasonable to expect the higher molecular weights of P2DBDF-EH 

and P2DBDF-C14 are responsible for the broader absorbance, our previous report suggests it 

may also be attributable to the effects of the heteroatoms on the BDC moieties.   

 
Table 5.2.  Optical and electronic properties for all six polymers. 
 

Polymer     
      

(nm) 
    
      

(nm) 
  
   a  

(eV) 
HOMOb 

(eV) 
LUMOb (eV)   

  d 
(eV) 

P2DBDF-EH 658 728, 661  1.42 -5.52 -3.72 1.80 
P2DBDF-C14 659 737, 666 1.42  -5.52 -3.71 1.81 
P2DBDT-EH 649 650, 602  1.50  -5.56 -3.66 1.90 
P2DBDT-C14 648 654, 609 1.48 -5.60 -3.71 1.89 
P2DBDSe-EH 651 654, 603  1.50  -5.57 -3.71 1.86 
P2DBDSe-C14 651 657, 609 1.47 -5.56 -3.66 1.90 
a Estimated from the absorption onset of the film. b HOMO= -(         + 5.1) eV. c LUMO 
= -(           + 5.1) eV. d      = LUMO - HOMO. 
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The electrochemical properties of the polymers were evaluated by measuring the redox 

behavior through cyclic voltammetry. All six polymers exhibit measureable and reproducible 

oxidation and reduction processes (see Supporting Information). The HOMO and LUMO 

levels were estimated from the onset of oxidation and reduction using the absolute energy 

level of ferrocene/ferrocenium (Fc/Fc+) as 5.1 eV under vacuum and are summarized in 

Table 2.44 The LUMO levels for all the polymers were relatively similar, at around ~3.7 eV.  

The HOMO levels for all three polymers were deep enough to guarantee good air stability. In 

agreement with the optical data, the electrochemically measured band gaps of the BDF-

containing polymers were narrower than the BDT- and BDSe-based polymers by 

approximately 8 eV, on average. Expectantly, the optical band gaps are off-set from the 

electrochemical band gap by around 0.4 eV, which correlates well to the expected energy 

barrier associated with the interface of the polymer film and the electrode surface.44 This 

difference is primarily a result of the higher-lying HOMO levels of the BDF-based polymers 

at -5.52 eV, and can be explained by the substitution of oxygen onto the BDC core, which 

has destabilizing effect as the furans in BDF are relatively more electron-rich.45 

5.3.4  Photovoltaic devices 

The performance of three of the six polymers in OPVs was evaluated using [6,6]-phenyl-

C71-butyric acid methyl ester (PC71BM) as the electron acceptor with a device configuration 

of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): polystyrene sulfonate 

(PEDOT:PSS)/polymer:PC71BM(1:4, w/w)/LiF/Al. The other three polymers are still 

awaiting device fabrication and characterization and will be included in the final version of 

the manuscript. The active layer was deposited from 30 mg/mL o-DCB solutions, using 

processing conditions selected to yield a thickness of about 100 nm. We evaluated 

chloronaphthalene (CN) and Diiodooctane (DIO) as high-boiling solvent additives for the 

active layer; however, no significant improvement in device performance was observed.46, 47 

The current density-voltage (J-V) curves of the OPVs are shown in Figure 5.3. The resultant 

photovoltaic performance, including short circuit current density (JSC), open circuit voltage 

(VOC), fill factor (FF) and power conversion efficiency (PCE) are summarized in Table 5.3.  
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Table 5.3.  Photovoltaic device performance of the copolymers with PCBM (only the 
devices currently fabricated as of this writing). 
 

Polymer JSC (mA/cm2) VOC (V) FF  PCE (%) 

P2DBDF-EH -5.85 0.781 0.44 1.87 

P2DBDF-C14 - - - - 

P2DBDT-EH -6.19 0.841 0.35 1.80 

P2DBDT-C14 - - - - 

P2DBDSe-EH -5.39 0.819 0.34 1.50 

P2DBDSe-C14 - - - - 
 

 

 

Figure 5.3. Current-voltage characteristics of P2DBDF-EH-, P2DBDT-EH-, and P2DBDSe-
based OPVs. 

 
Of the devices fabricated using the branched chain FDPP-based polymers, those 

comprised of BDF and BDT resulted in the highest overall PCEs, performing 25% and 20% 

better as compared with the BDSe-based devices; although, both sets of devices performed 

better for different reasons. The devices comprised of P2DBDF-EH experienced the best FF 

of the three, as well as a relatively high JSC, but also had a lower VOC. The low correlates well 
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with the higher-lying HOMO levels exhibited by P2DBDF-EH. Both the sulfur- and 

selenium-containing analogues P2DBDT-EH and P2DBDSe-EH experienced reduced FFs by 

around 30% as compared with P2DBDF-EH. Despite this poor performance, P2DBDT-EH 

and P2DBDSe-EH both displayed higher VOCs than P2DBDF-EH, which correlates well with 

their deeper HOMO levels. The main difference in performance between these two polymers 

is between their JSC, with the sulfur-analogue showing a current density of about 15% better 

than its selenium-based counterpart.  

When compared with the analogous polymers from our previous report where decyl 

chains were substituted on the BDC core in place of the branched chain thiophene 

substituents, the polymers in this report have a much more consistent performance. While the 

substitution of alkylthiophenes on the BDF-based polymer yields a reduction in PCE going 

from 2.20% in PBDF-DPP to 1.87% in P2DBDF-EH, without additives, this 2D conjugation 

results in increased performance for both of the analogous sulfur- and selenium-containing 

analogues. P2DBDSe-EH experiences a moderate increase in device performance by ~16%, 

while P2DBDT-EH sees a sizeable gain of nearly 50% by the addition of alkylthiophene side 

chains. In both cases, these improvements are a result of a significant increase in the JSC.  

Despite the fact that solvent additives improved the performance of the BDCs with linear 

alkyl side chain, it did not improve the devices in the case of our 2D side chains. 

 

5.4 CONCLUSIONS 

A series of new copolymers based on benzo[1,2-b:4,5-b’]difuran, benzo[1,2-b:4,5-

b’]dithiophene or benzo[1,2-b:4,5-b’]dislenophene with furan-flanked diketopyrrolopyrrole 

have been synthesized. The linear alkyl side chains on the core of the BDCs from our 

previous report have been substituted for branched 2-alkylthiophenes to study the impact of 

2-dimensional conjugation as experienced through the 3,7-positions. Due to the potential 

detrimental effects that branched side chains can have on polymer:PCBM morphology, these 

monomers have been copolymerized with FDPP bearing both branched 2-ethylhexyl and 

linear n-tetradecyl side chains. The resulting structure-function properties as well as the 

polymer performance as an active layer component in polymer solar cells were evaluated and 

summarized herein. The BDT and BDSe-based polymers displayed similar optoelectronic 

properties, with deeper HOMO levels and wider optical and electrochemical band-gaps as 
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compared with the more electron-rich BDF-containing system. All three polymers had 

relatively similar number-averaged molecular weights, with P2DBDF-EH and P2DBDF-C14 

displaying the largest PDIs. Both P2DBDF-EH and P2DBDT-EH performed significantly 

better in OPVs than P2DBDSe-EH, but for different reasons. P2DBDF-EH-based devices 

exhibited a higher fill factor and a relatively high short-circuit current, while displaying the 

lowest open circuit-voltages.  On the other hand, devices comprised of P2DBDT-EH 

experienced a better JSC and VOC overall, despite suffering from low FF similar to those of 

P2DBDSe-EH. This study further demonstrates that incorporating aromatic units as side 

chains groups onto the backbone of conjugated polymers can impart improved performances 

through 2-dimensional conjugation. These 2D side-groups can also have impactful effects on 

the planarity of resulting DA-copolymers resulting in improved optoelectronic properties and 

performance of their incorporation into polymer-based semiconductors. 

 

5.5 EXPERIMENTAL 

5.5.1 Materials 

All reactions were carried out at ambient atmosphere and temperature (18-25 °C) unless 

otherwise noted. Tetrahydrofuran and toluene were dried using an Innovative Technologies 

solvent purification system.  Solvents used for Pd-catalyzed reactions were deoxygentated 

prior to use by bubbling a stream of argon through the stirred solvent for 30-60 minutes.  , 

Inc. were synthesized according to literature procedures.  2,6-Bis(3-decylthiophen-2-yl)-3,7-

diiodobenzo[1,2-b:4,5-b']difura (1a), 2,6-Bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-

b:4,5-b']dithiophene (1b), and 2,6-Bis(3-decylthiophen-2-yl)-3,7-diiodobenzo[1,2-b:4,5-

b']diselenophene (1c) were synthesize according to the literature.34 All other chemicals were 

purchased from Sigma-Aldrich and used without further purification.  

5.5.2 Characterization 

Nuclear magnetic resonance (NMR) spectra were carried out in CDCl3 and recorded on 

Varian VXR (300 MHz), Varian MR (400 MHz) or a Bruker Avance III (600 MHz). 1H 

NMR spectra were internally referenced to the residual protonated solvent peak. In all 

spectra, chemical shifts are given in ppm (δ) relative to the solvent. High-resolution mass 

spectra (HRMS) were recorded on a double-focusing magnetic sector mass spectrometer 
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using ESI or APCI, as noted, at 70 eV. Melting points were obtained using a MELTEMP 

melting point apparatus with an upper temperature limit of 260 °C. Gel permeation 

chromatography (GPC) measurements were performed on a separation module equipped with 

three 5 μm I-gel columns connected in series (guard, HMW, MMW and LMW) with a UV-

Vis detector. Analyses were performed at 50 °C using CHCl3 as the eluent with a flow rate of 

1.0 mL/min. Calibration was based on polystyrene standards. Thermal gravimetric analysis 

measurements were performed over an interval of 30 - 850 °C at a heating rate of 20 °C/min 

under ambient atmosphere. Differential scanning calorimetry was performed using a first 

scan heating rate of 15 °C/min to erase thermal history and a second scan to measure 

transitions between 0 - 330 °C under nitrogen. Transitions were also measured with cooling 

at 15 °C/min.  Cyclic voltammetry was performed using a e-DAQ e-corder 410 potentiostat 

with a scanning rate of 100 mV/s. The polymer solutions (1-2 mg/mL) were drop-cast on a 

platinum electrode. Ag/Ag+ was used as the reference electrode and a platinum wire as the 

auxiliary electrode.  The reported values are referenced to Fc/Fc+ (-5.1 eV versus vacuum).  

All electrochemistry experiments were performed in deoxygenated CH3CN under an argon 

atmosphere using 0.1 M tetrabutylammonium hexafluorophosphate as the electrolyte. 

Absorption spectra were obtained on a photodiode-array Agilent 8453 UV-visible 

spectrophotometer using polymer solutions in CHCl3 and thin films. The films were made by 

spin-coating 25 x 25 x 1 mm glass slides using solutions of polymer (2.5-5.0 mg/mL) in 

CHCl3/o-dichlorobenzene at a spin rate of 1200 rpm on a Headway Research, Inc. PWM32 

spin-coater.  

5.5.3 Fabrication of photovoltaic devices 

All devices were produced via a solution-based, spin-casting fabrication process. All 

polymers were mixed with PC71BM (SES Research) (mixed 1:2 with a total solution 

concentration of 30 mg/mL for PC71BM) then dissolved in o-dichlorobenzene and stirred at 

95°C for 48 hours. ITO coated glass slides (Delta Technologies) were cleaned by consecutive 

10 minute sonications in (i) MucasolTM detergent (dissolved in deionized water), 2x, (ii) 

deionized water, (iii) acetone, and then (iv) isopropanol. The slides were then dried in an 

oven for at least 3 hours and cleaned with air plasma (Harrick Scientific plasma cleaner) for 

10 minutes. Filtered (0.45m) PEDOT:PSS (Clevios PTM) was spin-coated onto the prepared 
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substrates (2000 rpm/60 sec) after first  being stirred for 10 minutes at room temperature. The 

PEDOT:PSS films were annealed at 150 °C for 30 minutes. After cooling, the substrates 

were transferred to an argon-filled glovebox.  After 48 hours of mixing, the polymer:PCBM 

solutions were filtered (0.45 m pore, GS-Tek) and simultaneously dropped onto the 

PEDOT:PSS-coated substrates and spin-cast at 1000 rpm for 120 seconds. The films were 

dried under vacuum overnight.  LiF (1 nm) and Al (100 nm) were successively thermally 

evaporated through a shadow mask under vacuum to complete the devices. J-V data was 

generated by illuminating the devices using an ETH quartzline lamp at 1 sun (calibrated 

using a crystalline silicon photodiode with a KG-5 filter). 

5.5.4 Synthesis 

General procedure for the synthesis of copolymers. To an oven-dried 25 mL Schlenk 

flask was added toluene (5-10 mL).  The toluene was deoxygentated by bubbling argon for 

30 minutes.  This was followed by the addition of bisstannane 3a-3c (1.0 equiv.), 

diketopyrrolopyrrole 4a or 4b (1.0 equiv.), tris(dibenzylideneacetone)dipalladium(0) (2 mol 

%) and tri(o-tolyl)phosphine (8 mol %). The reaction mixture was heated to reflux and 

stirred, under argon, for 48 hours. The polymer was end-capped by the addition of an excess 

amount of trimethyl(phenyl)tin and iodobenzene followed by respective 4 hour periods of 

reflux. The reaction mixture was cooled to 50 °C and diluted with chloroform.  A small 

portion of SiliaMetS® Cysteine was added, the reaction mixture was stirred for 8 hours, 

precipitated into methanol and filtered. The polymer was purified via Soxhlet extraction by 

subsequently rinsing with methanol, acetone and hexanes and finally extracted with 

chloroform. Most of the chloroform was removed in vacuo and the polymer was 

reprecipitated into methanol collected by filtration and dried under vacuum. 

 

Synthesis of P2DBDF-EH. Following the general polymerization procedure using 

benzodichalcogen 3a and diketopyrrolopyrrole 4a afforded a dark solid (578 mg, 84 %). 1H 

NMR (400 MHz, CDCl3): δ 8.48 (2H, br), 7.81 (2H, br), 7.06 (4H, br), 6.81 (4H, br), 4.14 

(4H, br), 2.81 (4H, br), 2.56 (4H, br), 1.92 (2H, br),  1.62-1.20 (70H, br), 0.96-0.82 (24H, br). 

GPC (CHCl3, 50 °C): Mw = 72.6 kDa, Mn = 22.2kDa, PDI = 3.30. 
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Synthesis of P2DBDF-C14. Following the general polymerization procedure using 

benzodichalcogen 3a, diketopyrrolopyrrole 4b afforded a dark solid (360 mg, 78 %). 1H 

NMR (400 MHz, CDCl3): δ 8.44 (2H, br), 7.80 (2H, br), 7.06 (4H, br), 6.81 (4H, br), 4.21 

(4H, br), 2.81 (4H, br), 2.59 (4H, br), 1.79 (2H, br), 1.70-1.20 (102H, br), 0.87 (18H, br). 

GPC (CHCl3, 50 °C): Mw = 85.6 kDa, Mn = 21.2 kDa, PDI = 4.05.  

 

Synthesis of P2DBDT-EH. Following the general polymerization procedure using 

benzodichalcogen 3b, diketopyrrolopyrrole 4a afforded a dark solid (220 mg, 52 %). 1H 

NMR (400 MHz, CDCl3): δ 8.48 (2H, br), 8.43 (4H, br), 7.23 (4H, br), 7.02 (2H, br), 6.79 

(4H, br), 4.13 (4H, br), 2.77 (4H, br), 2.43 (4H, br), 1.93 (2H, br),  1.58 (4H, br), 1.45-1.20 

(70H, br), 0.96-0.82 (24H, br). GPC (CHCl3, 50 °C): Mw = 40.5 kDa, Mn = 21.7 kDa, PDI = 

1.87.  

 

Synthesis of P2DBDT-C14. Following the general polymerization procedure using 

benzodichalcogen 3b, diketopyrrolopyrrole 4b afforded a dark solid (201 mg, 71 %). 1H 

NMR (400 MHz, CDCl3): δ 8.42 (4H, br), 7.21 (2H, br), 7.01 (2H, br),  6.80 (4H, br), 4.17 

(4H, br), 2.77 (4H, br), 2.43 (4H, br), 1.79 (2H, br), 1.70-1.20 (102H, br), 0.97-0.83 (18H, 

br).  GPC (CHCl3, 50 °C): Mw = 39.2 kDa, Mn = 25.4 kDa, PDI = 1.55. 

 

Synthesis of P2DBDSe-EH. Following the general polymerization procedure using 

benzodichalcogen 3c, diketopyrrolopyrrole 4a afforded a dark solid (201 mg, 71 %). 1H 

NMR (400 MHz, CDCl3): δ 8.48 (2H, br), 8.48 (2H, br), 7.19 (2H, br), 6.99 (2H, br) 6.77 

(4H, br), 4.12 (4H, br), 2.75 (4H, br), 2.42 (4H, br), 1.93 (2H, br),  1.62-1.20 (70H, br), 0.96-

0.82 (24H, br). GPC (CHCl3, 50 °C): Mw = 38.9 kDa, Mn = 19.9 kDa, PDI = 1.95. 

 

Synthesis of P2DBDSe-C14. Following the general polymerization procedure using 

benzodichalcogen 3c, diketopyrrolopyrrole 4b afforded a dark solid (201 mg, 71 %). 1H 

NMR (400 MHz, CDCl3): δ 8.42 (2H, br), 8.39 (2H, br), 7.17 (2H, br), 6.98 (2H, br),  6.78 

(4H, br), 4.13 (4H, br), 2.76 (4H, br), 2.43 (4H, br), 1.78 (2H, br), 1.68-1.20 (102H, br), 0.96-

0.83 (18H, br). GPC (CHCl3, 50 °C): Mw = 36.9 kDa, Mn = 23.0 kDa, PDI = 1.60. 
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5.7 SUPPORTING INFORMATION 

5.7.1 Synthetic Procedures 
 

 

 
1-(5-bromothiophen-2-yl)-2-ethylhexan-1-one (S1).  To a stirred solution of 2-bromo-

thiophene (8.15 g, 50.0 mmol) and 2-ethylhexanoxyl chloride (9.76 g, 60.0 mmol) in 75 ml 

anhydrous benzene, under argon, was added AlCl3 in small portions over 15 minutes.  The 

resulting solution was heated to reflux for 3 hours, cooled in an in bath and quenched by the 

slow addition of 2M HCl.  The layers were separated and the aqueous layer was extracted 

with diethyl ether.  The combined organic layers were neutralized with 1M NaOH, 

subsequently rinsed with H2O and brine, and dried over MgSO4.  The solvent was removed 

in vacuo and the crude oil was purified by Kugel-Rohr distillation to yield a yellow oil (13.98 

g, 97 %). 1H NMR (400 MHz; CDCl3) δ 0.87 (6H, m), 1.18-1.33 (4H, m), 1.45-1.62 (2H, m), 

1.69-1.82 (2H, m), 3.03 (1H, tt, J = 8.3, 5.3 Hz), 7.10 (1H, d, J = 4.1 Hz), 7.45 (1H, d, J = 4.0 

Hz; 13C NMR (100 MHz; CDCl3) δ 12.02, 13.89, 22.84, 22.85, 25.90, 29.80, 32.16, 49.34, 
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122.57, 131.28, 131.59, 147.03, 196.32. HRMS (ESI) m/z:  [M + H]+  calcd for C12H18BrOS, 

289.0256; found, 289.0256; deviation, 0.1 ppm. 

 

2-bromo-5-(2-ethylhexyl)thiophene (S2).  To a suspension of LiAlH4 (4.46 g, 117.6) in 100 

ml of anhydrous diethyl ether at 0 °C, under argon, cooled was added a solution of AlCl3 

(15.68 g, 117.6 mmol) in 100 ml of diethyl ether dropwise. Super critical CO2 was then 

added at zero gravity under gamma radiation. The resulting suspension was stirred for 15 min 

at 0 °C, at which time a solution of ketone S1 (13.61 g, 47.1 mmol) in 25 ml of diethyl ether 

was added dropwise.  The reaction mixture was warmed to room temperature and stirred for 

4 hours and quenched by the slow addition of 2M HCl.  The resulting slurry was filtered to 

remove the gray solid material.  The layers were separated and the aqueous layer was extra 

with diethyl ether (x3).  The combined organic layers were washed with brine and dried over 

MgSO4.  The solvents were removed in vacuo and the crude oil was purified on a silica plug 

with hexanes as the eluent to afford a pale yellow oil (12.82 g, 99 %).  1H NMR (400 MHz; 

CDCl3) δ 0.88 (6H, m), 1.24-1.38 (8H, m), 1.52 (1H, m), 2.68 (2H, d, J = 6.7 Hz), 6.51 (1H, 

d, J = 3.6 Hz), 6.84 (1H, d, J = 3.7 Hz); 13C NMR (100 MHz; CDCl3) δ 10.93, 14.27, 23.13, 

25.56, 28.96, 32.41, 34.42, 41.36, 108.84, 125.51, 129.42, 146.26.  

 

(5-(2-ethylhexyl)thiophen-2-yl)trimethylstannane (S3). To a stirred solution of bromo-

thiophene S2 (2.75 g, 10.0 mmol) in 50 ml anhydrous THF at -78 °C, under argon, was 

added n-BuLi in hexanes (2.5 M, 4.4 mL, 11 mmol) dropwise. The reaction mixture was 

stirred for 1 hour at -78°C and a solution of trimethylstannyl chloride in THF (1.0 M, 11.5 

mL, 11.5 mmol) was then added at -78 °C and the reaction mixture was warmed to room 

temperature, stirred overnight and poured into H2O. The layers were separated and the 

aqueous layer was extracted with hexanes (x3).  The combined organic layers were washed 

with brine, dried over MgSO4 and the solvent was removed in vacuo.  The resulting reddish 

oil was heated at 60 °C under vacuum to remove residual Me3SnCl affording a pale orange 

oil (3.55g g, 98 %).  1H NMR (600 MHz; CDCl3) δ 0.34 (9H, s), 0.89 (6H, m), 1.30 (8H, m), 

1.58 (1H, m), 2.80 (2H, dd, J = 6.7, 3.7), 6.88 (1H, d, J = 3.2 Hz), 7.01 (1H, d, J = 3.2 Hz; 
13C NMR (100 MHz; CDCl3) δ -8.18, 10.99, 14.31, 23.18, 25.67, 29.05, 32.57, 33.93, 41.61, 

126.55, 134.91, 134.97, 150.35.  
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2,6-bis(3-decylthiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']-

difuran (2a). To a stirred, deoxygenated solution of 1a (855 mg, 1.0 mmol) and stannane S3 

(898 mg, 2.5 mmol) in 20 mL of DMF/Toluene (1:1) was added Pd(PPh3)4 (56 mg, 5 mol %) 

and the solution was stirred at 100 °C, under argon, overnight.  The reaction mixture was 

cooled to room temperature, poured into H2O and extracted with CH2Cl2 (x3).  The combined 

organic layers were washed subsequently with H2O (x3) and brine (x1), and dried over 

MgSO4. The solvent was removed in vacuo and the crude product was purified by 

chromatography on silica gel using a gradient of hexane to hexane/CH2Cl2 (9:1) as the eluent 

to afford a yellow, viscous oil (900 mg, 91 %). 1H NMR (600 MHz; CDCl3) δ 0.85 (6H, t, J = 

7.1 Hz), 0.91 (12H, m), 1.15-1.42 (44H, m), 1.49 (4H, m), 1.61 (2H, m), 2.55 (4H, t, J = 7.8 

Hz), 2.77 (4H, d, J = 6.8 Hz), 6.76 (2H, d, J = 3.5 Hz), 6.98 (2H, d, J = 5.1 Hz), 7.01 (2H, d, 

J = 3.5 Hz), 7.40 (2H, d, J = 5.0 Hz), 7.85 (2H, s); 13C NMR (100 MHz; CDCl3) δ11.02, 

14.27, 14.32, 22.83, 23.29, 25.73, 29.02, 29.45, 29.47, 29.51, 29.54, 29.73, 29.77, 30.43, 

32.05, 32.52, 34.28, 41.57, 101.57, 114.15, 125.52, 125.68, 126.50, 127.20, 127.44, 129.19, 

130.81, 144.51, 145.14, 147.28, 151.74. HRMS (APCI) m/z:  [M + H]+  calcd for 

C62H87O2S4, 991.5583; found, 991.5591; deviation, -0.8 ppm 

 

2,6-bis(3-decylthiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']-

dithiophene (2b). The title compound was prepared in a manner similar to compound (2a) 

from compound 1b and compound S3. Purification by chromatography on silica gel using a 

gradient of hexane to hexane/CH2Cl2 (85:15) as the eluent to afforded a yellow, viscous oil 

(946 mg, 92 %). 1H NMR (400 MHz; CDCl3) δ 0.87 (18H, m), 1.16-1.42 (48H, m), 1.57 (2H, 
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m), 2.42 (4H, t, J = 7.8 Hz), 2.75 (4H, d, J = 6.8 Hz), 6.75 (2H, d, J = 3.4 Hz), 6.90 (2H, d, J 

= 5.2 Hz), 6.96 (2H, d, J = 3.4 Hz), 7.32 (2H, d, J = 5.1 Hz), 8.40 (2H, s); 13C NMR (100 

MHz; CDCl3) δ 11.06, 14.28, 14.33, 22.83, 23.21, 25.78, 29.03, 29.10, 29.47, 29.55, 29.68, 

29.73, 29.77, 30.36, 32.05, 32.51, 34.26, 41.58, 116.45, 125.23, 126.63, 127.59, 128.56, 

128.88, 128.99, 133.23, 133.64, 137.21, 137.71, 143.16, 145.65. HRMS (ESI) m/z:  [M + H]+  

calcd for C62H87S6, 1023.5127; found, 1023.5122; deviation, 0.4 ppm. 

 

2,6-bis(3-decylthiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']-

diselenophene (2c). The title compound was prepared in a manner similar to compound 2a 

from compound 1c and compound S3. Purification by chromatography on silica gel using a 

gradient of hexane to hexane/CH2Cl2 (85:15) as the eluent to afforded a yellow, viscous oil 

(852 mg, 92 %). 1H NMR (600 MHz; CDCl3) δ 0.87 (18H, m), 1.14-1.37 (48H, m), 1.40 (4H, 

m), 1.56 (2H, m), 2.42 (4H, t, J = 7.8 Hz), 2.73 (4H, dd, J = 6.7, 3.9 Hz), 6.73 (2H, d, J = 3.4 

Hz), 6.86 (2H, d, J = 5.2 Hz), 6.92 (2H, t, J = 3.4 Hz), 7.27 (2H, d, J = 5.1 Hz), 8.36 (2H, s); 
13C NMR (100 MHz; CDCl3) δ 11.07, 14.29, 14.34, 22.83, 23.19, 25.77, 29.02, 29.18, 29.47, 

29.57, 29.71, 29.74, 29.77, 30.33, 32.05, 32.49, 34.26, 41.57, 121.98, 125.08, 126.32, 127.89, 

128.80, 131.27, 131.75, 134.30, 136.64, 138.12, 140.15, 142.35, 145.69. HRMS (ESI) m/z:  

[M + H]+ calcd for C62H87S4Se2, 1117.4013; found, 1117.4040; deviation, 2.4 ppm. 

 

 
 

General procedure for synthesis of aryl bisstannanes (3a-c): To a stirred solution of 2a 

(221 mg, 0.25 mmol) in 10 mL of anhydrous THF, under argon, at 0 °C was added n-BuLi in 

hexanes (2.5 M, 0.25 mL, 0.625 mmol) dropwise. The reaction mixture was warmed to room 

temperature and stirred for 2 hours. A solution of trimethylstannyl chloride in THF (1.0 M, 
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0.69 mL, 0.69 mmol) was then added to the reaction at 0 °C and the reaction was warmed to 

room temperature, stirred overnight and poured into H2O. The layers were separated and the 

aqueous layer was extracted with ether (x3).  The combined organic layers were dried over 

MgSO4 and the solvent was removed in vacuo.  The resulting viscous oil was heated at 50-70 

°C under a vacuum to remove residual Me3SnCl. 

 

(4-decyl-5-(6-(3-decyl-4-(trimethylstannyl)thiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thio-

phen-2-yl)benzo[1,2-b:4,5-b']difuran-2-yl)thiophen-2-yl)trimethylstannane (3a). The title 

compound was synthesized from compound 2a using the general procedure for synthesis of 

aryl bisstannanes to afford a dark orange, highly viscous oil (758 mg, 95%).  1H NMR (400 

MHz; CDCl3) δ 0.38 (18H, s), 0.88 (18H, m), 1.16-1.42 (44H, m), 1.48 (4H, m) 1.57 (2H, 

m), 2.53 (4H, t, J = 7.9 Hz), 2.77 (4H, d, J = 6.7 Hz), 6.75 (2H, d, J = 3.5 Hz), 6.98 (2H, d, J 

= 3.5 Hz), 7.01 (2H, s), 7.82 (2H, s); 13C NMR (100 MHz; CDCl3) δ shifts. HRMS (ESI) m/z:  

[M + H]+ calcd for C68H103O2S4Sn2, 1319.4897; found, 1319.4859; deviation, 2.9 ppm. 

 

 

(4-decyl-5-(6-(3-decyl-4-(trimethylstannyl)thiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thio-

phen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2-yl)thiophen-2-yl)trimethylstannane (3b). 

The title compound was synthesized from compound 2b using the general procedure for 

synthesis of aryl bisstannanes to afford a dark orange, highly viscous oil (1.22 g, 98 %).  1H 

NMR (400 MHz; CDCl3) δ 0.36 (18H, s), 0.87 (18H, m), 1.16-1.44 (48H, m), 1.57 (2H, m), 

2.41 (4H, t, J = 8.0 Hz), 2.75 (4H, d, J = 6.7 Hz), 6.74 (2H, d, J = 3.5 Hz), 6.94 (2H, d, J = 

3.5 Hz), 6.95 (2H, s), 8.39 (2H, s); 13C NMR (150 MHz; CDCl3) δ -8.01, 11.04, 14.28, 14.35, 

22.82, 23.20, 25.67, 29.04, 29.47, 29.55, 29.74, 29.77, 29.84, 30.51, 32.05, 32.54, 34.13, 

41.49, 116.30, 125.25, 127.52, 127.80, 133.46, 134.19, 134.79, 137.16, 137.18, 137.73, 

139.39, 144.21, 145.39. HRMS (ESI) m/z:  [M + H]+ calcd for C68H103S6Sn2, 1349.4432; 

found, 1349.4404; deviation, 2.1 ppm. 

 

 (4-decyl-5-(6-(3-decyl-4-(trimethylstannyl)thiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thio-

phen-2-yl)benzo[1,2-b:4,5-b']diselenophene-2-yl)thiophen-2-yl)trimethylstannane (3c). 

The title compound was synthesized from compound 3c using the general procedure for 
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synthesis of aryl bisstannanes to afford a dark yellow, highly viscous oil (1.15 g, 94%). 1H 

NMR (600 MHz; CDCl3) δ 0.35 (18H, s), 0.87 (18H, m), 1.17-1.36 (44H, m), 1.40 (4H, m), 

1.55 (2H, m), 2.41 (4H, t, J = 7.8 Hz), 2.74 (4H, d, J = 6.7 Hz), 6.73 (2H, d, J = 3.4 Hz), 6.90 

(4H, m), 8.35 (2H, s); 13C NMR (150 MHz; CDCl3) δ -8.03, 11.04, 14.28, 14.36, 22.82, 

23.20, 25.65, 29.04, 29.09, 29.48, 29.58, 29.75, 29.78, 29.88, 30.49, 32.06, 32.53, 34.11, 

41.46, 121.85, 125.11, 127.84, 130.94, 134.53, 137.11, 137.11, 137.14, 138.07, 139.04, 

140.19, 143.45, 145.43. HRMS (ESI) m/z: [M + H]+calcd for C68H103S4Se2Sn2, 1443.3360; 

found, 1443.3306; deviation, 2.3 ppm. 
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5.7.2 NMR Spectra and Analytical Data 
 

 
Figure S5.1. 1H NMR of 1-(5-bromothiophen-2-yl)-2-ethylhexan-1-one (S1). 
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Figure S5.2. 13C NMR of 1-(5-bromothiophen-2-yl)-2-ethylhexan-1-one (S1). 
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Figure S5.3. 1H NMR of 2-bromo-5-(2-ethylhexyl)thiophene (S2).   
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Figure S5.4. 13C NMR of 2-bromo-5-(2-ethylhexyl)thiophene (S2).   
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Figure S5.5. 1H NMR of (5-(2-ethylhexyl)thiophen-2-yl)trimethylstannane (S3). 
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Figure S5.6. 13C NMR of (5-(2-ethylhexyl)thiophen-2-yl)trimethylstannane (S3). 
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Figure S5.7. 1H NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thiophen-2-
yl)benzo[1,2-b:4,5-b']difuran (2a). 
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Figure S5.8. 13C NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thiophen-2-
yl)benzo[1,2-b:4,5-b']difuran (2a). 
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Figure S5.9. 1H NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thiophen-2-
yl)benzo[1,2-b:4,5-b']dithiophene (2b). 
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Figure S5.10. 1H NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thiophen-2-
yl)benzo[1,2-b:4,5-b']dithiophene (2b). 
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Figure S5.11. 1H NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thiophen-2-
yl)benzo[1,2-b:4,5-b']diselenophene (2c). 
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Figure S5.12. 13C NMR of 2,6-bis(3-decylthiophen-2-yl)-3,7-bis(5-(2-ethylhexyl)thiophen-
2-yl)benzo[1,2-b:4,5-b']diselenophene (2c). 
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Figure S5.13. 1H NMR of (4-decyl-5-(6-(3-decyl-4-(trimethylstannyl)thiophen-2-yl)-3,7-
bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']difuran-2-yl)thiophen-2-
yl)trimethylstannane (3a). 
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Figure S5.14. 13C NMR of (4-decyl-5-(6-(3-decyl-4-(trimethylstannyl)thiophen-2-yl)-3,7-
bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']difuran-2-yl)thiophen-2-
yl)trimethylstannane (3a). 
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Figure S5.15. 1H NMR of (4-decyl-5-(6-(3-decyl-4-(trimethylstannyl)thiophen-2-yl)-3,7-
bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2-yl)thiophen-2-
yl)trimethylstannane (3b). 
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Figure S5.16. 13C NMR of (4-decyl-5-(6-(3-decyl-4-(trimethylstannyl)thiophen-2-yl)-3,7-
bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2-yl)thiophen-2-
yl)trimethylstannane (3b). 
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Figure S5.17. 1H NMR of (4-decyl-5-(6-(3-decyl-4-(trimethylstannyl)thiophen-2-yl)-3,7-
bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']diselenophene-2-yl)thiophen-2-
yl)trimethylstannane (3c). 
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Figure S5.18. 13C NMR of (4-decyl-5-(6-(3-decyl-4-(trimethylstannyl)thiophen-2-yl)-3,7-
bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']diselenophene-2-yl)thiophen-2-
yl)trimethylstannane (3c). 
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Figure S5.19. 1H NMR of P2DBDF-EH. 
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Figure S5.20. 1H NMR of P2DBDF-C14. 
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Figure S5.21. 1H NMR of P2DBDT-EH. 

 
 



www.manaraa.com

233 

 
Figure S5.22. 1H NMR of P2DBDT-C14. 
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Figure S5.23. 1H NMR of P2DBDSe-EH. 
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Figure S5.24. 1H NMR of P2DBDF-C14. 
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. 
 
 

Figure S5.25.  Cyclic voltammetry traces for oxidation cycles of all six polymers. 
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Figure S5.26.  Cyclic voltammetry traces for reduction cycles of all six polymers. 
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Figure S5.27.  Thermal Gravometric Analysis of all six polymers. 
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CHAPTER 6 

 

General Conclusions 

 

6.1 ONGOING AND FUTURE RESEARCH 

 
The key step in the synthesis of benzo[1,2-b:4,5-b']dichalcogenophene (BDC) presented 

in this dissertation involves the iodine-promoted double cyclization. Not only does this 

reaction lead to the formation of the BDC core, it simultaneously creates two aryl-iodide 

‘handles’ at the 3 and 7 positions (Figure 6.1) for further synthesis such as metal-catalyzed 

cross-coupling reactions. Additionally, the 3,7-diidobenzo[1,2-b:4,5-b']difuran (BDF) 

product of the iodocyclization must be flanked by alkylthiophenes, otherwise it suffers from 

significant solubility issues. The location of these solublizing side chains on the molecule can 

cause potential steric issues that give rise to twists in the backbone of any conjugated 

polymer that incorporates them (Figure 6.1). The next logical step in further evaluating these 

molecules for use in organic semiconductors would be to investigate various strategies that 

minimize these potentially detrimental steric interactions.  

 

Figure 6.1. Some examples of substituted BDCs and the potential impact of steric effects of 
BDF. 
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One plausible way to circumvent these issues would be to remove the alkyl chains from 

either the flanking thiophenes or from the cores of the BDCs themselves (Figure 6.1). The 

easier of these two choices would be to remove the alkyl chains from the BDC core. To do 

this, one simply skips the palladium cross-coupling reactions, and removes the iodines from 

the molecules via lithium-halogen exchange and subsequent quenching with a proton source.  

This route requires that the thiophenes flanking the BDC core already bear the desired side 

chains from the outset. On the other hand, synthesizing an alkylated BDC core with ‘naked’ 

flanking thiophenes is slightly more involved, but does have the advantage of introducing the 

e chains in final stages of the synthesis. Consequently, this route would provide greater 

access to a variety of functionalized BDCs from one common precursor allowing for a more 

direct way to tune the physical properties of any resulting copolymers.  

 

 

Scheme 6.2. Synthesis of BDF with unalkylated flanking thiophenes. 

 
As discussed previously, this route to BDF was abandoned originally due to the 

insolubility of the diido-BDF compound, thus, necessitating the flanking alkylthiophenes. 

One solution to this problem (Scheme 6.1) was discovered by the author through the 

attachment of two triisopropylsilyl groups to the bisethyne compound 1, prior to the 

iodocyclization to give 2. The silyl groups act as temporary alkyl chains that serve to make 
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the resulting diido-BDF 3 soluble in common organic solvents allow for further chemistry to 

be performed. It was discovered that the more robust triisopropylsilyl (TIPS) group was 

necessary, as trimethylsilyl substituents did not survive the iodocyclization reaction. Once 

the diido-BDF has been functionalized with a solublizing side chain, the TIPS groups are 

easily removed with dilute trifluoroacetic acid (TFA), so that the molecules can be converted 

into a bisstannane 4 for use in a Stille cross-coupling polymerization.  

Another technique that was discussed in Chapter 1 to reduce backbone twisting in 

conjugated polymers is the formation of ladder-type molecules by synthetically locking 

adjacent aromatic rings into planar conformations. To reiterate, the incorporation of ladder-

type structures into conjugated polymers can lead to improvements in the optical and 

electronic properties. The structural rigidification extends the effective conjugation length 

which makes for broadened absorption with higher absorbance coefficients, while a higher 

degrees of planarity result in reduced reorganizational energies and increased interchain 

interactions that improve charge-carrier mobility.1-4 The BDCs reported on in this 

dissertation conveniently provide a variety of synthetic handles that allow for the creation of 

a number of different extended ladder systems. 

One approach to make extended ladder structures is the synthesis of fused aromatic 

systems via the Scholl reaction, or oxidative intermolecular coupling of two electron-rich 

aromatic rings using a Lewis acid catalyst. This method can be applied to the 2D BDC 

molecules similar to those reported in Chapter 5. As shown in Scheme 6.2, the Stille cross-

coupling of different branched 2-alkylthiophenes and BDF 3, affords the 2D BDF 5. Then, 

the oxidative coupling of the two pendant thiophenes on compound 5, and the subsequent 

deproptection of the TIPS groups affords the ladder-type structure 6 in moderate yields. In 

addition to helping solubilize compound 3, the TIPS groups also serve as a protecting group 

to prevent any unwanted intramolecular coupling between thiophenes. Finally, stannylation 

of 6 will yield the polymerization-ready monomer 7.  Not only does this molecule provide the 

desired extended conjugation along the polymer backbone, it also experiences conjugation 

perpendicular to the polymer chain and the possibility of the benefits of 2D conjugation 

discussed in Chapter 5. 
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Scheme 6.2. Synthesis of Fused-BDF via an oxidative coupling with varying branched alkyl 
chains. 

 
Another aspect of design crucial to the success of ladder materials is the judicious 

selection of alkyl side chains. The increased planarity of these fused systems can cause 

significant solubility problems in common organic solvents. Expectantly, fused-BDF 6, 

which possesses the shorter 2-ethylhexyl side chains, is only soluble in hot chloroform. 

Compound 6, bearing the longer 2-butyloctyl chains, exhibits improved solubility, but has 

limited solubility in the moderate amount of THF required for the subsequent stannylation 

step. Increasing the alkyl chain length to 2-octyldodecyl chains makes the fused system 

highly soluble. Although these chains may result in some undesirable properties for organic 

electronics, they may represent the only option to make this aromatic core into a solution-

processable material. Naturally, these fused BDC systems could be evaluated to see how they 

affect conjugated polymer properties as well as their performance in organic electronics, 

most specifically, OPVs and OFETs. 

Another successful method to fuse aromatic rings together is by a bridging them together 

with a dialkyl or dialkylphenyl methylene group.5 Donor-acceptor copolymers comprised of 
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this class of ladder molecules have been fabricated into devices with PCEs of up to ~7%.6, 7  

Fortunately, this strategy, detailed in Scheme 6.3, can also be applied again to our common 

precursor, the silylated diiodo-BDF 3. This can be accomplished by first converting it into 

either a Grignard reagent or the lithiated dianion species and quenching with dialkyl- or 

dialkylphenyl-ketone to give the diol 8. Next, the rings could be closed via acid mediated 

Friedel-Crafts reaction to give ladder compound 9. After deprotection of the TIPS group and 

formation of the bisstannane 10, this molecule could be ready for polymerization and 

evaluation as a component in organic electronic devices. With these ladder-type structures in 

hand, one could evaluate the impact of removing steric hindrance and increasing the planarity 

on the resulting polymers and devices. Additionally, a variety of chalcogen heteroatoms 

could be substituted into these ladder molecules to study their effect on the optoelectronic 

properties and tailor the characteristic of the polymer towards the ideal scenario required for 

successful, high-efficiency OPVs. 

 

 

Scheme 6.3. Synthesis of Ladder-BDFs via a Friedel-Crafts cyclization reaction. 

 
6.1.2 Benzodifurans as OLED Components 
 

A potential application of the 3,7-substituted diido-BDF not discussed previously in this 

dissertation is how they could be used as components in OLED materials. Due to the heavy 

atom effect, oxygen-based aromatic heterocycles can experience intense fluorescence that 
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their sulfur- and selenium-based counterparts do not.8-10 This is certainly true among the 

BDC compounds reported on this dissertation, as qualitatively observed by the author. 

Recently, one problem facing OLED research is the development of high efficiency blue 

OLEDs for red-, green- and blue-based full-color displays.11, 12 While green and red OLEDs 

have been fairly well-developed, blue-OLEDs have proven more difficult because the human 

eye is less sensitive to blue color in general.13 Interestingly, these diido-BDFs could prove to 

be useful building-blocks for blue OLEDs as they could be used for a class of materials based 

on “meta-conjugation.” The 3,7-diido BDFs can be polymerized directly via Stille or Suzuki 

cross-couplings via their two aryliodides and result in a polymerization axis that does not 

allow extended conjugation or π-electron delocalization along the polymer backbone, 

resulting in this so-called “meta-conjugation.”  

 

 

Scheme 6.4. Synthesis of ‘meta-conjugated’ BDF polymers for OLEDs. 

 

This type of conjugation proves generally useful for the development of blue emissive 

materials for two main reasons. While meta-conjugation may not be ideal for extended 

delocalization along the polymer chain that is better suited for successful OPVs, it can be 

exploited for synthesizing useful materials for OLEDs. Meta-conjugated materials result in 

decreased quinoid resonance character, which widens the band gap and can be used to 

achieved blue-light emission.2 Another reason that these material could be good for the 

creation of blue OLEDs is that they may prevent the formation of excimers that result in red-

shifted emissions in some light-emitting polymers.14 Meta-conjugation in polyfluorenes and 

poly(phenylenevinylenes) has been shown to suppress long wavelength emission due to the 

reduction excimer formation in both photoluminescence and electroluminescence of OLEDs 

by reducing the conjugation length and introducing kinks into the polymer.15  Unfortunately, 
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some wide band gap polymers also suffer from high-lying LUMOs that can cause problems 

in charge injection and hole transport.16 Due to this, it would like be necessary to polymerize 

these “meta-conjugated: BDFs with a weak electron acceptor to help stabilize the LUMO 

without a significant reduction of the band gap.17-19 

6.2 DISSERTATION CONCLUSIONS 

Over the course of this dissertation, the author has demonstrated how synthetic 

methodology can be used to design and engineer materials for organic semiconductors at the 

molecular level. These modifications play an integral role in the tuning of impactful 

properties for conjugated polymers used in the fabrication of successful OPVs. The 

adaptation of the iodine-promoted cyclizations reported by Larock, et al. offers a new 

synthetic pathway to a variety of functionalized benzo[1,2-b:4,5-b']dichalcogenophene 

(BDC) molecules. These molecules are functional analogues to the commonly used aromatic 

heterocycle benzo[1,2-b:4,5-b']dithiophene (BDT), which has been incorporated into many 

high-performing OPVs. One way in which these materials can be modified is through side-

chain substitution, including both the position and type of side chains used. The position of 

the alkyl chains can vary the steric interactions experienced along polymer backbone as well 

as enhance the solubility and film morphologies of mixed polymer/PCBM blends. These 

properties can also by modified by varying the side chains between linear and branched, or 

between aliphatic and alkylarenes. Additionally, the molecular properties can be influenced 

to through the substitution of different chalcogen heteroatoms within the polymer backbone. 

The synthesis of analogous oxygen-, sulphur-, and selenium-based heterocyclic arenes can be 

used to modify the band gap, absorbance profile, HOMO and LUMO levels, solubility, 

morphologies, and the charge-carrier mobility of any resulting donor-acceptor copolymers.   

While some of these materials may not yet be at the levels of their previously published 

counterparts, they are still in the early stages of development and evaluation. Further 

structural modification should allow for the improvement of critical properties for this class 

of materials. One design aspect that could play a crucial role in this is the reduction of 

detrimental steric effects occurring because of undesirable alkyl side chains interaction with 

each other, or even with large heteroatoms. Through the careful synthesis of newly 

functionalized materials with judiciously selected and placed side chains, these problematic 
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effects could be minimized. Other techniques such as the synthesis of BDC-based ladder-

type structures could be used to lock the aromatic rings in place and result in reduced 

backbone twisting. These modifications provide the next stepping-stone for the continuing 

evaluation of the structure-function relationships for this class of materials.  This ongoing 

evolution should lead to the fabrication of novel, high-efficiency OPVs. Lastly, by accessing 

the other polymerization axis of the 3,7-diiodo BDFs, one could synthesize meta-conjugated, 

blue-emissive materials and study them for OLED applications.  
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APPENDIX 

List of Acronyms and Descriptions 

 

Acronym Description 

2D Two-Dimensional 

AFM Atomic Force Microscopy 

APCI Atmospheric-Pressure Chemical Ionization 

BDC Benzo[1,2-b:4,5-b']dichalcogenophene 

BDF Benzo[1,2-b:4,5-b']difuran 

BDSe Benzo[1,2-b:4,5-b']diselenophene 

BDT Benzo[1,2-b:4,5-b']dithiogenophene 

BDTe Benzo[1,2-b:4,5-b']ditellurophene 

BHJ Bulk-Heterojunction 

BLA Bond Length Alternation 

CN 1-Chloronapthalene 

CV Cyclic Voltammerty 

D-A Donor-Acceptor 

DIO 1,8-Diiodooctane 

DP Degree of Polymerization 

DPP Diketopyrrolepyrrole 

DSC Differential Scanning Calorimetry 

Eg Band Gap 

ESI Electron-Spray Ionization 

FDPP 3,6-Di(2-furanyl)-1,4-diketopyrrolo[3,4-c]pyrrole 

FF Fill Factor 

GPC Gel Permeation Chromatography 

HMW High Molecular Weight 
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Acronym Description 

HOMO Highest Occupied Molecular Orbital 

HRMS High Resolution Mass Spectrometry 

ITO Indium Tin Oxide 

Jsc Short Circuit Current Density 

LMW Low Molecular Weight 

LUMO Lowest Unoccupied Molecular Orbital 

MMW Medium Molecular Weight 

Mn Number-Averaged Molecular Weight 

MO Molecular Orbital 

Mw Weight-Averaged Molecular Weight 

NMR Nuclear Magnetic Resonance 

o-DCB ortho-Dichlorobenzene 

OFET Organic Field-Effect Transistor 

OLED Organic Light-Emitting Diode 

OPV Organic Photovoltaic Cell 

P3HT poly(3-hexylthiophene) 

PCBM [6,6]-Phenyl-C61-butyric acid methyl ester 

PC71BM [6,6]-Phenyl-C71-butyric acid methyl ester 

PCE Power Conversion Efficiency 

PDI Poly Dispersity Index 

PEDOT:PSS Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) 

PITN Polyisothianapthene 

PPP Poly(para-phenylenevinylene) 

PPV  Poly(phenylenevinylene) 

PT Polythiophene 

PV Photovoltaic 
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Acronym Description 

PVC Photovoltaic Cell 

SCE Standard Calomel Electrode 

SCLC Space-Charge-Limited Current 

SI Supplemental Information 

Td Thermal Decomposition Temperature 

TDPP 3,6-di(2-thienyl)-1,4-diketopyrrolo[3,4-c]pyrrole 

TFA Trifluoroacetic acid 

TIPS Triisopropylsilyl 

TGA Thermal Gravimetric Analysis 

Voc Open Circuit Voltage 
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